3. Rate Law and Stoichiometry

- o **Objectives**
	- **- Write the relationship between the relative rates of reaction.**
	- **- Write a rate law and define reaction order and activation energy.**
	- **- Set up a stoichiometric table for both batch and flow systems and express concentration as a function or conversion.**
	- **- Write -r^A solely as a function of conversion given the rate law and then entering concentration.**
	- **- Calculate the equilibrium conversion for both gas and liquid phase reactions.**

0. Rationale for Chapter 3 I

- o **Review of Chap 2_1**
	- if we had $-r_A$ as a function of X, $\left[-r_A = f(X)\right]$, we could **size many reactors and reactor sequences and systems.**

0. Rationale for Chapter 3 II

- o **Review of Chap 2_2**
	- **- How do we obtain** $-r_A = f(X)$ **?**
		- **« We do this in two steps »**
- **1. Part 1 Rate Law – Find the rate as a function of concentration,**

$$
-r_A = k \text{fn} (C_A, C_B ...)
$$

2. Part 2 Stoichiometry – Find the concentration as a function of conversion

 $C_A = g(X)$

 \Rightarrow Combine Part 1 and Part 2 to get $-r_A = f(X)$

1. Basic Definitions I

- o **Homogeneous rxn**
	- **- Involves only one phase**
- o **Heterogeneous rxn**
	- **- Involves more than one phase and rxn occurs at the interface btn the phases**
- o **Irreversible rxn**
	- **- Proceeds in only one direction to exhaust**
- o **Reversible rxn**
	- **- Proceeds in either direction depending on the conc. of reactants and products relative to the corresponding equilibrium conc.**

1. Basic Definitions II

- o **Molecularity of a rxn**
	- **- Number of atoms, ions, or molecules colliding in a rxn step**
		- **unimolecular, bimolecular, termolecular**
- o **Common examples**
	- **- Unimolecular**

$$
{}_{92}U^{238} \rightarrow {}_{90}Th^{234} + {}_{2}He^{4} - r_{U} = kC_{U}
$$

- Bimolecular

$$
\mathbf{a} \mathbf{r}
$$
\n
$$
\mathbf{B} \mathbf{r} \bullet + \mathbf{C}_2 \mathbf{H}_6 \to \mathbf{H} \mathbf{B} \mathbf{r} + \mathbf{C}_2 \mathbf{H}_5 \bullet - r_{\text{Br} \bullet} = k \mathbf{C}_{\text{Br} \bullet} \mathbf{C}_{\text{C}_2 \text{H}_6}
$$

- Termolecular

$$
2NO + O_2 \rightarrow 2NO \implies Chap7
$$

Mar/10 **2011 Spring 5** 5

1. Basic Definitions III

o **Relative Rates of Reaction (p. 81)**

$$
A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D
$$

- **- For every mole of A consumed,** *c/a* **moles of C appears**
- **rate of formation of C = (c/a)(rate of disappearance of A)** $\dot{r}_{\rm C} = \frac{c}{r_{\rm A}} (-r_{\rm A}) = -\frac{c}{r_{\rm A}} (r_{\rm A})$ *a c -r a c* $r_{\rm C} = -(-r_{\rm A}) = -$

• **likewise**
$$
r_C = \frac{c}{d}(r_D)
$$

- In general *r* —

$$
\frac{-r_{A}}{a} = \frac{-r_{B}}{b} = \frac{r_{C}}{c} = \frac{r_{D}}{d}
$$

$$
\frac{r_{A}}{-a} = \frac{r_{B}}{-b} = \frac{r_{C}}{c} = \frac{r_{D}}{d}
$$

1. Basic Definitions IV

o **Example 1**

$$
2NO + O_2 \leftrightarrow 2NO
$$

- **- Then** 2 -1 2 $r_{\rm NO}$ $r_{\rm O_2}$ $r_{\rm NO_2}$ $=$ —
— $=$ —
—
- **- If NO² is being formed at a rate of 4 mol/m³ /s**
- **rate of formation of NO**
- **rate of disappearance of NO** $\dot{r}_{\rm NO} = \frac{2}{2} r_{\rm NO_2} =$ $r_{\rm NO} = \frac{2}{\epsilon}r$

$$
-r_{\rm NO} = 4 \text{ mol/m}^3/\text{s}
$$

 $2 \frac{1}{r}$ 4 mol/m^3

2

-

 $4 \text{ mol/m}^3/\text{s}$

• rate of disappearance of O₂

$$
r_{\text{O}_2} = \frac{-1}{-2} r_{\text{NO}_2} = 2 \text{ mol/m}^3/\text{s}
$$

1. Basic Definitions V

- o **Example 2**
	- **- The Reaction:**

 $2A + 3B \rightarrow 3C$

is carried out in a reactor. If at a particular point, the rate of disappearance of A is 10 mol/dm³/s, what are **the rates of B and C?**

•
$$
-r_A = 10 \text{ mol/dm}^3\text{/s}
$$
 $\frac{r_A}{-2} = \frac{r_B}{-3} = \frac{r_C}{5}$

⇒ $-r_B$ = (10 mol/dm³/s)(3/2) = 15 mol/dm³/s **r^C = (10 mol/dm³ /s)(5/2) = 25 mol/dm³ /s**

2. The Rxn Order and the Rate Law I

o **Rxn rate**

- Depends on temperature and composition

 $-r_A = [k_A(T)][\text{fn}(C_A, C_B,...)]$

- **-** rate constant, k_{A}
- **specific rate of rxn**
- **always refers to a particular species in the rxn**
- o **Power law model**

β B α $-r_{\rm A} = k_{\rm A} \mathbf{C}_{\rm A}^{\alpha} \mathbf{C}$ **β order w.r.t reactant A**

α order w.r.t reactant A

overall order of rxn $n = α + β$

2. The Rxn Order and the Rate Law II

- o **Unit of the specific rxn rate**
	- **- With rxn order n** Time (Concentration)^{$1-n$} $k =$
		- **Zero-order (n = 0), {k} = mol/dm³ ·s**
		- First-order $(n = 1)$, $\{k\} = s^{-1}$
		- **Second-order (n = 2), {k} = dm³ /mol·s**
		- Third-order $(n = 2)$, $\{k\} = (dm^3/mol)^2$ s⁻¹
- o **Elementary rxn**
	- **- Single step**
	- **- Power in the rate law = stoichiometry coefficient**

☞ **Some non-elementary rxns follow elementary law**

2. The Rxn Order and the Rate Law III

TABLE 3-1. EXAMPLES OF REACTION RATE LAWS **A. First-Order Rate Laws** $-r_A = kC_{C_2H_6}$ (1) $C_2H_6 \longrightarrow C_2H_4 + H_2$ $-r_A = kC_{\phi N = NCI}$ $\phi N = NCl \longrightarrow \phi Cl + N_2$ (2) $CH₂OH$ (3) $-r_A = kC_{\text{CH,OCH}}$ $-CH_2 + H_2O \xrightarrow{H_2SO_4} CH_2OH$ $-r_A = kC_{\text{CH}_3\text{COCH}_3}$ (4) $CH_3COCH_3 \longrightarrow CH_2CO + CH_4$ $-r_n = k[C_{nC_4} - C_{iC_4}/K_C]$ $nC_4H_{10} \rightleftharpoons iC_4H_{10}$ (5)

2. The Rxn Order and the Rate Law IV

B. Second-Order Rate Laws

(1)
$$
\underbrace{\bigodot}_{(1)} \underbrace{C1}_{+2NH_3} \underbrace{CH_2}_{+2NH_3} \underbrace{NH_2}_{-} \underbrace{\bigodot}_{+NH_4CL} \underbrace{F_A = k_{ONCB}C_{ONCB}C_{NH_3}}_{-r_A = k_{C_{NCB}}C_{C_{NH_3}}}
$$
\n(2)
$$
\underbrace{CNBr + CH_3NH_2} \longrightarrow CH_3Br + NCNH_2} \underbrace{F_A = k_{C_{NCB}}C_{CH_3NH_2}}_{-r_A = k_{C_{NCB}}C_{CH_3NH_2}}
$$
\n(3)
$$
\underbrace{CH_3COC_2H_5 + C_4H_9OH \rightleftharpoons CH_3COC_4H_9 + C_2H_5OH} \underbrace{F_A = k_{C_{NCB}}C_{CH_3NH_2}}_{-r_A = k_{C_{NCB}}C_{C_{NCA}}/K_C]}
$$

2. The Rxn Order and the Rate Law V

- o **Nonelementary rate laws**
	- **- Most of both homogeneous & heterogeneous rxns**
	- homogeneous rxn $CO + CI₂ \rightarrow COCI₂$

$$
-r_{\rm CO}=kC_{\rm CO}C_{\rm Cl_2}^{3/2}
$$

 $-$ **Complex rate expressions, 2N₂O** \rightarrow **2N₂ + O₂**

$$
-r_{N_2O} = \frac{k_{N_2O}C_{N_2O}}{1 + k'C_{O_2}}
$$

• apparent rxn orders both k values are strongly T-dependent ☞ at low O $_{2}$ **conc.,** $\quad 1 >> k \ C_{_{\mathrm{O}_2}} \quad \Rightarrow$ **apparent 1st order** at high $\mathbf{O}_{\mathbf{2}}$ conc., $\;\; 1\!<\!\! k\, C_{\mathrm{O}_2}$ ⇒ **apparent -1 order wrt O² , 1st order wrt N2O** 2 O ' $1 \gg k$ ['] C ' $1 << k$ ['] C

2. The Rxn Order and the Rate Law VI

TABLE 3-1. EXAMPLES OF REACTION RATE LAWS (CONTINUED)

C. Nonelementary Rate Laws

$$
(1) CH3CHO \longrightarrow CH4 + CO
$$

$$
-r_{\mathrm{CH}_3CHO}=kC_{\mathrm{CH}_3CHO}^{3/2}
$$

$$
-r_{\rm C} = \frac{k[P_{\rm C} - P_{\rm B}P_{\rm P}/K_{\rm P}]}{1+K_{\rm B}P_{\rm B} + K_{\rm C}P_{\rm C}}
$$

2. The Rxn Order and the Rate Law VII

D. Enzymatic Reactions (Urea (U) + Urease (E))

 $+H_2O$ $NH_2CONH_2 + Urease \rightarrow 2NH_3 + CO_2 + Urease$

E. Biomass Reactions

Substrate (S) + Cells (C) \rightarrow More Cells + Product

2. The Rxn Order and the Rate Law VIII

- o **Reversible rxns 1**
	- **- Gas-phase rxn, elementary & reversible 1**

$$
2C_6H_6 \leftarrow k_{\rm B}, k_{\rm B} \rightarrow C_{12}H_{10} + H_2
$$

or in symbolic 2B

$$
2B \leftarrow k_{\rm B}, k_{\rm B} \rightarrow D + H_2
$$

• benzene (B) is depleted by the forward rxn

$$
2C_6H_6 \xrightarrow{k_B} C_{12}H_{10} + H_2
$$

- the rate of disappearance $r_{\text{B,forward}} = k_{\text{B}} C_{\text{B}}^2$ $- r_{\text{B,forward}} = k_{\text{B}} C_{\text{B}}^2$
- **benzene (B) is produced by the reverse rxn**

$$
C_{12}H_{10} + H_2 \xrightarrow{k_B} 2C_6H_6
$$

• the rate of production $r_{\text{B,reverse}} = k_{\text{-B}} C_{\text{D}} C_{\text{H}_2}$

2. The Rxn Order and the Rate Law IX

- o **Reversible rxns 2**
	- **- Gas-phase rxn, elementary & reversible 2**
	- **net rate of formation = (forward + reverse) rate**

$$
r_{\rm B} \equiv r_{\rm B, net} = -r_{\rm B, forward} + r_{\rm B, reverse}
$$

$$
r_{\rm B} = -k_{\rm B}C_{\rm B}^2 + k_{\rm B}C_{\rm D}C_{\rm H_2}
$$

• or the rate of disappearance of benzene

$$
-r_{\rm B} = k_{\rm B}C_{\rm B}^2 - k_{\rm B}C_{\rm D}C_{\rm H_2} = k_{\rm B}\left(C_{\rm B}^2 - \frac{k_{\rm B}}{k_{\rm B}}C_{\rm D}C_{\rm H_2}\right)
$$

• or with in equilibrium constant

$$
-r_{\rm B} = k_{\rm B} \left(C_{\rm B}^2 - \frac{C_{\rm D} C_{\rm H_2}}{K_C} \right), \quad \text{where} \frac{k_{\rm B}}{k_{\rm B}} = K_C \text{ Cone eqlm const}
$$

3. Rate Constant, k (p 91)

- o **Specific reaction rate**
	- **- k is the specific reaction rate (constant) and is given by the Arrhenius Equation:**

$$
k = Ae^{-E/RT}
$$

\n
$$
T \rightarrow \infty \quad k \rightarrow A
$$

\n
$$
T \rightarrow 0 \quad k \rightarrow 0
$$

\n
$$
A \approx 10^{13}
$$

- **Where: E = activation energy (cal/mol)**
	- **R = gas constant (cal/mol*K)**
	- **T = temperature (K)**
	- **A = frequency factor (units of A, and k,**