
3. Rate Law and Stoichiometry

o Objectives

- Write the relationship between the relative rates of 
reaction.

- Write a rate law and define reaction order and 
activation energy. 

- Set up a stoichiometric table for both batch and flow 
systems and express concentration as a function or 
conversion. 

- Write -rA solely as a function of conversion given the 
rate law and then entering concentration. 

- Calculate the equilibrium conversion for both gas 
and liquid phase reactions. 



0. Rationale for Chapter 3 I
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o Review of Chap 2_1

- if we had -rA as a function of X, [-rA= f(X)], we could 

size many reactors and reactor sequences and 

systems.



0. Rationale for Chapter 3 II
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o Review of Chap 2_2

- How do we obtain –rA = f(X)?

« We do this in two steps »

1. Part 1 Rate Law – Find the rate as a function of 

concentration,

–rA = k fn (CA, CB …) 

2. Part 2 Stoichiometry – Find the concentration as a 

function of conversion

CA = g(X)

⇒ Combine Part 1 and Part 2 to get –rA = f(X)



1. Basic Definitions I
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o Homogeneous rxn

- Involves only one phase

o Heterogeneous rxn

- Involves more than one phase and rxn occurs at the 

interface btn the phases

o Irreversible rxn

- Proceeds in only one direction to exhaust

o Reversible rxn

- Proceeds in either direction depending on the conc. 

of reactants and products relative to the 

corresponding equilibrium conc.



1. Basic Definitions II
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o Molecularity of a rxn

- Number of atoms, ions, or molecules colliding in a 

rxn step

• unimolecular, bimolecular, termolecular

o Common examples

- Unimolecular

- Bimolecular

- Termolecular
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1. Basic Definitions III
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o Relative Rates of Reaction (p. 81)

- For every mole of A consumed, c/a moles of C 

appears

• rate of formation of C = (c/a)(rate of disappearance 

of A)

• likewise

- In general 
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1. Basic Definitions IV
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o Example 1

- Then

- If NO2 is being formed at a rate of 4 mol/m3/s

• rate of formation of NO

• rate of disappearance of NO

• rate of disappearance of O2
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1. Basic Definitions V
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o Example 2

- The Reaction:

2A + 3B → 3C

is carried out in a reactor. If at a particular point, the 

rate of disappearance of A is 10 mol/dm3/s, what are 

the rates of B and C? 

• -rA = 10 mol/dm3/s  

⇒ -rB = (10 mol/dm3/s )(3/2) = 15 mol/dm3/s 

rC = (10 mol/dm3/s )(5/2) = 25 mol/dm3/s
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2. The Rxn Order and the Rate Law I
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o Rxn rate

- Depends on temperature and composition

- rate constant, kA

• specific rate of rxn

• always refers to a particular species in the rxn

o Power law model
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2. The Rxn Order and the Rate Law II
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o Unit of the specific rxn rate

- With rxn order n

• Zero-order     (n = 0), {k} = mol/dm3·s

• First-order     (n = 1), {k} = s-1

• Second-order (n = 2), {k} = dm3/mol·s

• Third-order    (n = 2), {k} = (dm3/mol)2·s-1

o Elementary rxn

- Single step

- Power in the rate law = stoichiometry coefficient

☞ Some non-elementary rxns follow elementary law
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2. The Rxn Order and the Rate Law III
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2. The Rxn Order and the Rate Law IV
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2. The Rxn Order and the Rate Law V
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o Nonelementary rate laws

- Most of both homogeneous & heterogeneous rxns

• homogeneous rxn CO + Cl2 → COCl2

- Complex rate expressions, 2N2O → 2N2 + O2

• apparent rxn orders

both k values are strongly T-dependent 

☞ at low O2 conc.,                       ⇒ apparent 1st order

at high O2 conc.,                       

⇒ apparent -1 order wrt O2, 1
st order wrt N2O
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2. The Rxn Order and the Rate Law VI
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2. The Rxn Order and the Rate Law VII
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2. The Rxn Order and the Rate Law VIII
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o Reversible rxns 1

- Gas-phase rxn, elementary & reversible 1

or in symbolic

• benzene (B) is depleted by the forward rxn

• the rate of disappearance 

• benzene (B) is produced by the reverse rxn

• the rate of production 
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2. The Rxn Order and the Rate Law IX
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o Reversible rxns 2

- Gas-phase rxn, elementary & reversible 2

• net rate of formation = (forward + reverse) rate

• or the rate of disappearance of benzene

• or with in equilibrium constant

reverse B,forward B,net B,B - rrrr 
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3. Rate Constant, k (p 91)
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o Specific reaction rate

- k is the specific reaction rate (constant) and is given 

by the Arrhenius Equation:

Where:  E = activation energy (cal/mol)

R = gas constant (cal/mol*K)

T = temperature (K)

A = frequency factor (units of A, and k, 

depend on overall reaction order) 

RTEAek /

1310

0k0T

AkT







A


