#### 2. The Rxn Order and the Rate Law VIII

#### Reversible rxns 1

- Gas-phase rxn, elementary & reversible 1

$$2C_6H_6 \longleftrightarrow_{k_B,k_{-B}} C_{12}H_{10} + H_2$$

or in symbolic  $2B \longleftrightarrow_{k_{\mathrm{B}},k_{-\mathrm{B}}} D + H_2$ 

benzene (B) is depleted by the forward rxn

$$2C_6H_6 \xrightarrow{k_B} C_{12}H_{10} + H_2$$

- the rate of disappearance  $-r_{\rm B, forward} = k_{\rm B}C_{\rm B}^2$
- benzene (B) is produced by the reverse rxn

$$C_{12}H_{10} + H_2 \xrightarrow{k_{-B}} 2C_6H_6$$

• the rate of production  $r_{\rm B,reverse} = k_{-\rm B}C_{\rm D}C_{\rm H_2}$ 

#### 2. The Rxn Order and the Rate Law IX

- o Reversible rxns 2
  - Gas-phase rxn, elementary & reversible 2
  - net rate of formation = (forward + reverse) rate

$$r_{\rm B} \equiv r_{\rm B, \, net} = -r_{\rm B, \, forward} + r_{\rm B, \, reverse}$$

$$r_{\rm B} = -k_{\rm B}C_{\rm B}^2 + k_{\rm -B}C_{\rm D}C_{\rm H_2}$$

or the rate of disappearance of benzene

$$-r_{\rm B} = k_{\rm B}C_{\rm B}^2 - k_{\rm B}C_{\rm D}C_{\rm H_2} = k_{\rm B}\left(C_{\rm B}^2 - \frac{k_{\rm B}}{k_{\rm B}}C_{\rm D}C_{\rm H_2}\right)$$

or with in equilibrium constant

$$-r_{\rm B} = k_{\rm B} \left( C_{\rm B}^2 - \frac{C_{\rm D} C_{\rm H_2}}{K_C} \right), \text{ where } \frac{k_{\rm B}}{k_{\rm -B}} = K_C \text{ Conc eqlm const}$$

#### 2. The Rxn Order and the Rate Law X

o Rate Law Test

- What is the reaction rate law for the reaction

 $A + \frac{1}{2}B \rightarrow C$ 

if the reaction is elementary?  $-r_A = k_A C_A C_B^{1/2}$ 

What is  $r_{B}$ ?  $r_{B} = \frac{1}{2}r_{A} = -\frac{1}{2}k_{A}C_{A}C_{B}^{1/2}$ What is  $r_{C}$ ?  $r_{C} = -r_{A} = k_{A}C_{A}C_{B}^{1/2}$ 

Calculate the rates of A, B, and C in a CSTR where the concentrations are  $C_A = 1.5 \text{ mol/dm}^3$ ,  $C_B = 9 \text{ mol/dm}^3$  and  $k_A = 2 \text{ (dm}^3/\text{mol})^{(1/2)}(1/s)$ .

$$-r_{\rm A} = k_{\rm A} C_{\rm A} C_{\rm B}^{1/2} = (2)(1.5)(9)^{1/2} = 9 \frac{\rm mol}{\rm dm^3 \cdot s}$$

# 3. Rate Constant, k (p 91)

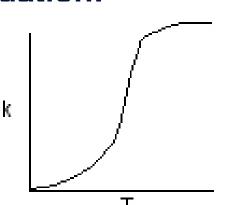
- **o Specific reaction rate** 
  - k is the specific reaction rate (constant) and is given by the Arrhenius Equation:

$$k = Ae^{-E/RT}$$
  

$$T \to \infty \quad k \to A$$
  

$$T \to 0 \quad k \to 0$$
  

$$A \approx 10^{13}$$

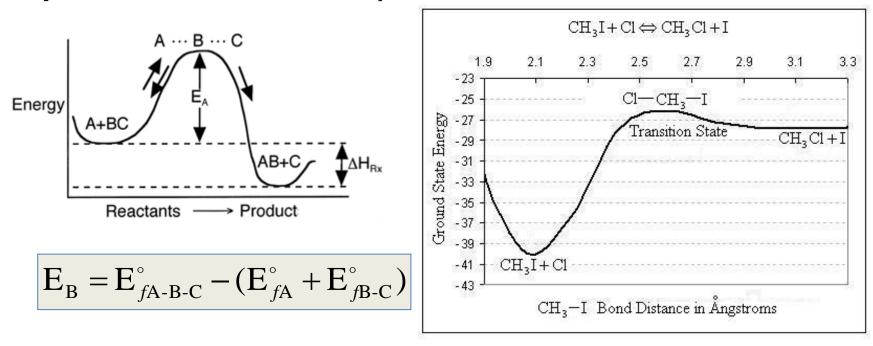




- Where: E = activation energy (cal/mol)
  - R = gas constant (cal/mol\*K)
  - T = temperature (K)
  - A = frequency factor (units of A, and k, depend on overall reaction order)

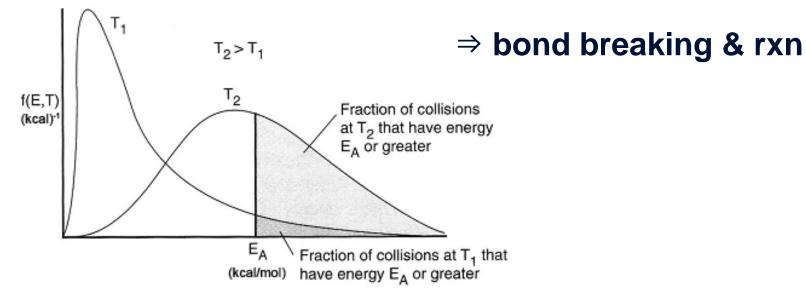
# **3. Rate Constant II**

- Activation energy 1
  - The height of the energy barrier separating two minima of potential energy of the reactants and products of a reaction)

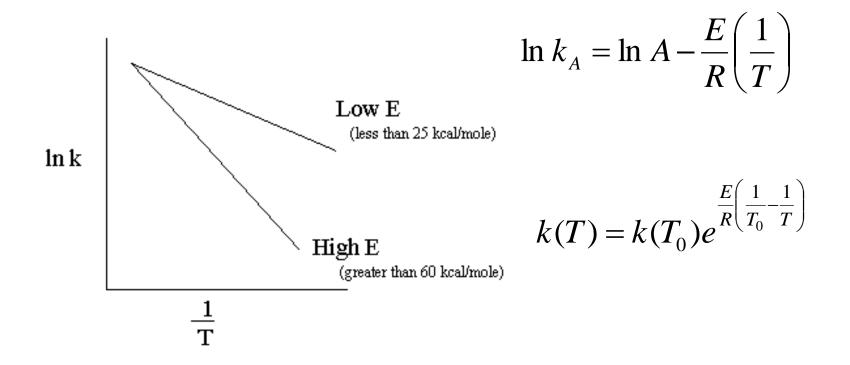


# **3. Rate Constant III**

- Activation energy 2
  - Collision theory
  - T  $\uparrow$  , E<sub>k</sub> of reactant  $\uparrow$  , molecular collision  $\uparrow$ 
    - $\Rightarrow$  internal energy (stretching, bending)  $\uparrow$
    - ⇒ causing them to reach an activated state

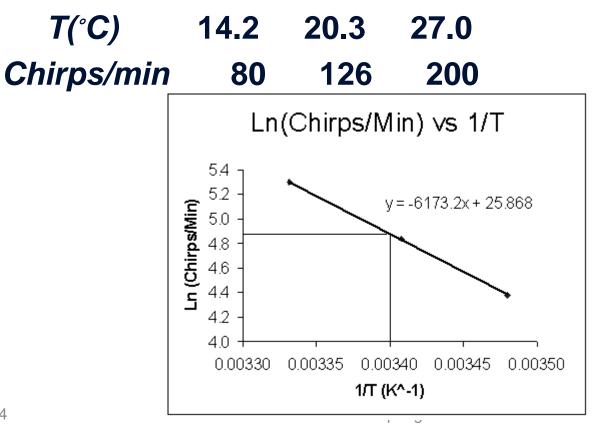


- **3. Rate Constant IV**
- Activation energy 3
  - Rearrangement  $k = Ae^{-E/RT}$



#### **3. Rate Constant V**

- Activation energy 4 (p 132 p 3-4)
  - The following sound of chirping crickets was recorded in the woods during the summer evening

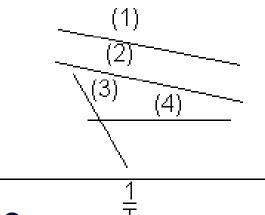


# **3. Rate Constant VI**

- Activation energy 5
  - Consider the following elementary reactions

ln k

1) 
$$A \xrightarrow{k_1} B$$
  
2)  $A \xrightarrow{k_2} D$   
3)  $A \xrightarrow{k_3} Y$   
4)  $A \xrightarrow{k_4} U$ 



- The higher activation energy?
- The same activation energy?
- Virtually temperature insensitive?
- Which reaction will dominate (i.e. take place the fastest) at high temperatures? 2011 Spring

# **3. Rate Constant VII**

- ${\rm \odot}$  Examples of Rate Laws
  - First order reactions

$$\begin{array}{c} C_{2}H_{6} \longrightarrow C_{2}H_{4} + H_{2} \\ \hline -r_{A} = k - C_{C_{2}}H_{6} \end{array} \text{ with } \quad k = 0.072 \text{ s}^{-1} \quad e^{\frac{82 \cdot kcal}{mol} \left(\frac{1}{1000} - \frac{1}{T}\right)} \end{array}$$

$$\begin{split} \varphi N &= NC1 \longrightarrow \varphi C1 + N_2 \\ \hline -r_A &= k - C_{\varphi N = NC1} \\ \text{with} \quad k = 0.00717 \quad s^{-1} \quad e^{-\frac{28.7}{R}\frac{kcal}{mol}\left(\frac{1}{333} - \frac{1}{T}\right)} \end{split}$$

$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{COCH}_{3} \longrightarrow \mathrm{CH}_{2}\mathrm{CO} + \mathrm{CH}_{4} \\ \hline \mathbf{r}_{A} = k \quad \mathrm{C}_{\mathrm{CH}_{3}\mathrm{COCH}_{3}} \text{ with } \ln k = 34.34 - \frac{34,322}{T} \end{array}$$

#### **3. Rate Constant VIII**

- **Examples of Rate Laws** 
  - Second order reactions

# This reaction is first order in ONCB, first order in ammonia and overall second order

## 4. Reactor Sizing & Design

| Reactor | Design Equations                                    |                                  |  |
|---------|-----------------------------------------------------|----------------------------------|--|
| Batch   | $N_{A0}\frac{dX}{dt} = -r_A V  t = N_{A0} \int_0^X$ | $\frac{dX}{-r_A V}$              |  |
| CSTR    | $V = \frac{F_{A0}X}{-r_A}$                          |                                  |  |
| PFR     | $F_{A0}\frac{dX}{dV} = -r_A \qquad V = F_{A0}.$     | $\int_{0}^{X} \frac{dX}{-r_{A}}$ |  |
| PBR     | $F_{A0} \frac{dX}{dW} = -r'_A \qquad W = F_{A0}$    | $\int_{0}^{X} \frac{dX}{r'A}$    |  |

## 5. Batch Systems (p.100)

- **o Limiting reactant A** 
  - Basis of calculation

$$\mathbf{A} + \frac{b}{a} \mathbf{B} \to \frac{c}{a} \mathbf{C} + \frac{d}{a} \mathbf{D}$$

- Define

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

$$N_T = N_{T0} + \delta N_{A0} X$$

#### **5. Batch Systems II**

| Species | Initial<br>(mol) | Change<br>(mol)         | Remaining<br>(mol)                                                                               |
|---------|------------------|-------------------------|--------------------------------------------------------------------------------------------------|
| Α       | $N_{ m A0}$      | $-(N_{A0}X)$            | $N_{\rm A} = N_{\rm A0} - N_{\rm A0} X$                                                          |
| В       | ${N}_{ m B0}$    | $-\frac{b}{a}(N_{A0}X)$ | $N_{\rm B} = N_{\rm B0} - \frac{b}{a} N_{\rm A0} X$                                              |
| С       | $N_{ m C0}$      | $\frac{c}{a}(N_{A0}X)$  | $N_{\rm C} = N_{\rm C0} - \frac{c}{a} N_{\rm A0} X$                                              |
| D       | $N_{ m D0}$      | $\frac{d}{a}(N_{A0}X)$  | $N_{\rm D} = N_{\rm D0} - \frac{d}{a} N_{\rm A0} X$                                              |
| Inert   | $N_{I0}$         |                         | $\underline{N_{\mathrm{I}} = N_{\mathrm{I0}}}$                                                   |
| Totals  | $N_{ m T0}$      | N                       | $T_{\rm T} = N_{\rm T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) N_{\rm A0} X$ |
| Mar/14  | 2011 Spring 14   |                         |                                                                                                  |

# **5. Batch Systems III**

- $\odot$  Eqns for batch conc'n
  - Concentration of batch system (= number/volume)  $C_{\Lambda} = \frac{N_{\rm A}}{N_{\rm A}}$

#### **5. Batch Systems IV**

- **o Constant Volume Batch** 
  - if the reaction occurs in the liquid phase or
    - if a gas phase reaction occurs in a rigid (e.g., steel) batch reactor
    - Then  $V = V_{\theta}$   $C_{A} = \frac{N_{A0}(1-X)}{V} = C_{A0}(1-X)$   $C_{B} = \frac{N_{A0}[\Theta_{B} - (b/a)X]}{V} = C_{A0}\left(\Theta_{B} - \frac{b}{a}X\right)$   $C_{C} = \frac{N_{A0}[\Theta_{C} - (c/a)X]}{V} = C_{A0}\left(\Theta_{C} - \frac{c}{a}X\right)$  $C_{D} = \frac{N_{A0}[\Theta_{D} - (d/a)X]}{V} = C_{A0}\left(\Theta_{D} - \frac{d}{a}X\right)$

2011 Spring