Liquids Streaming Current

The streaming current, I_s , is due to the charge density and velocity of the fluid over the double layer.

$$I_{s} = \left[\frac{10 \, x \, 10^{-6} \, amp}{(m/s)^{2} \, (m)^{2}}\right] (u \, d)^{2} \left[1 - \exp\left(-\frac{L}{u \, \tau}\right)\right]$$

$$\tau = \frac{\varepsilon_r \,\varepsilon_0}{\gamma_c} \qquad \varepsilon_0 = 8.85 \, x 10^{-12} \, \frac{coulomb^2}{N \, m^2} = 8.85 \, x 10^{-14} \, \frac{s}{ohm \ cm}$$

See table 7-2 (page 314)

Table 7-2 Properties for Electrostatic Calculations¹

Material	Specific conductivity ² (mho/cm)	Dielectric constant
Liquids		
Benzene	$7.6 imes10^{-8}$ to $<\!\!1 imes10^{-18}$	2.3
Toluene	$< 1 imes 10^{-14}$	2.4
Xylene	${<}1 imes10^{-15}$	2.4
Heptane	$< 1 imes 10^{-18}$	2.0
Hexane	${<}1 imes10^{-18}$	1.9
Methanol	$4.4 imes10^{-7}$	33.7
Ethanol	$1.5 imes 10^{-7}$	25.7
Isopropanol	$3.5 imes 10^{-6}$	25.0
Water	$5.5 imes10^{-6}$	80.4

Solids Streaming Current

Charging of solids depends on type of operation such as sieving, pouring, grinding, micronizing, sliding down an incline, or transport.

See Table 7-3 (page 315)

$$I_{s} = \left(\frac{coulombs}{kg}\right) \left(\frac{kg}{s}\right) = (charge)(flowrate)$$

Table 7-3 Charge Buildup for Various Operations¹

Process	Charge (coulomb/kg)	
Sieving	10 ⁻⁹ to 10 ⁻¹¹	
Pouring	10 ⁻⁷ to 10 ⁻⁹	
Grinding	10^{-6} to 10^{-7}	
Micronizing	10^{-4} to 10^{-7}	
Sliding down an incline	10^{-5} to 10^{-7}	
Pneumatic transport of solids	10^{-5} to 10^{-7}	

¹R. A. Mancini, "The Use (and Misuse) of Bonding for Control of Static Ignition Hazards," *Plant/Operations Progress* (Jan. 1988) 7(1): 24.

Table 7-4 Accepted Electrostatic Values for Calculations¹

Voltage to produce spark between needle points 1/2 in apart	14,000 V
Voltage to produce spark between plates 0.01 mm apart	350 V
Maximum charge density before corona discharge	2.65×10^{-9} coulomb/cm ²
Minimum ignition energies (mJ)	
Vapors in air	0.1
Mists in air	1.0
Dusts in air	10.0
Approximate capacitances C (micro-microfarads)	
Humans	100 to 400
Automobiles	500
Tank truck (2000 gal)	1000
Tank (12-ft diameter with insulation)	100,000
Capacitance between two 2-in flanges (1/8-in gap)	20
Contact zeta potentials	0.01 - 0.1 V

¹F. G. Eichel, "Electrostatics," Chemical Engineering (March 13, 1967), p. 163.

Charge on a Streaming Current

Charges can accumulate as a result of a streaming current $dQ/dt = I_s$. Assuming a constant streaming current,

$$Q = I_s t$$

This equation assumes that the system starts with no accumulation of charge, only one constant source of charge I_s and no current or charge loss term.

Electrostatic Voltage Drops

Energy of Charged Capacitors

Capacitance = C = Q/V

Voltage of a capacitor: V = Q/C

Work to a charged capacitor

C: [farads]

V: [volts]

Q: [coulombs]

$$\int dJ = \int V dQ = \int \frac{Q}{C} dQ$$

$$J = \frac{Q^2}{2C} = \frac{CV^2}{2} = \frac{QV}{2}$$

Example 7-4

4Flow rate of 1gpm, the energy charged at nozzle 5.49×10⁻¹⁴J the energy charged at tank 0.99mJ **4**Flow rate of 150gpm, the energy charged at nozzle 117J the energy charged at tank 8.45×10^7 J 2010 Fall

Capacitance of a Body

4 Parallel flat

$$V = \frac{QL}{\varepsilon_r \varepsilon_0 A} \qquad C = \frac{\varepsilon_r \varepsilon_0 A}{L}$$

4 Spherical

$$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\varepsilon_r r} \qquad C = 4\pi\varepsilon_r \varepsilon_0 r$$

See examples 7-5, 7-6, 7-7

Balance of Charges

For systems with several inlet lines and several outlet lines

$$\frac{dQ}{dt} = \sum_{i,in}^{n} \left(I_{s}\right)_{i,in} - \sum_{i,out}^{m} \left(I_{s}\right)_{j,out} - \frac{Q}{\tau}$$

$$\frac{dQ}{dt} = \sum_{i,in}^{n} \left(I_{s}\right)_{i,in} - \sum_{i,in}^{m} \frac{F_{j}}{V_{c}}Q - \frac{Q}{\tau}$$

Balance of Charges – Special Cases

<u>Case</u>: The flows, streaming currents, and relaxation time are constant

$$Q = A + B e^{-C} t$$

This equation is useful when the filling and discharging rates are sequential.

<u>Case</u>: Filling a tank (one inlet, no outlet)

$$Q = I_s \tau + \left(Q_0 - I_s \tau \right) e^{-t/\tau}$$

10/23/2011

Example 7-9

Charge buildup with toluene vessel

- J when the vessel fluid just reaches the overflow line; J=9.55mJ
- 4 J under equilibrium; 4.22mJ
- Half time of equilibrium charge without inlet
 - charge; 14.7 s

Charge Dissipation

4 Charge loss by relaxation 1.86×10⁻⁸ C/s

4 Charge loss by the overflow 1.31×10⁻⁷ C/s

Scenario for explosion

- **4** Mixture within flammability range
- Charges have accumulated: > 350 V
- Discharge energy > MIE Energies > 0.1 mJ hazards

Preventive measures: must control all three factors

Controlling Static Electricity I

- General Design Methods (Prevent charge from accumulating to dangerous level by)
 - **4**Reducing the rate of charge generation (liquids)
 - **4**Increasing the rate of charge relaxation (liquids)
 - Low-energy discharge design (powders)
- General Design Methods (Preventing the possibility of an ignition by)
 - Maintaining oxidant level below the combustible level

Controlling Static Electricity II

Relaxation

Enlarged section of pipe at entrance

Bonging & Grounding

4Fig. 7-18, 7-19, 7-20, pp 333~336

4Dip Pipes

4Fig. 7-21, p. 336

Additives

Increasing conductivity

Handling Solids

10/23/26 Fig. 7-22, 7-23, p. 337, p. 338

Figure 7-20 Grounding glass-lined vessels.

Figure 7-21 Dip legs to prevent free fall and accumulation of static charge.

2010 Fall

Controlling Static Electricity III

XP (Explosion-proof) Housing

Ex. Motor starter

Classification of Area

- Class I: Flammable gas or vapor
- Class II: Same for combustible dust
- Class III: Combustible fibers or dusts, not likely to be in suspension

Classification of Materials

4Group A~G

Ventilation & Sprinkler System

10/23/2011

Home assignment, due on Fri), Text 7-4, 5, 11, 13, 257