Lecture 4. Thermodynamics $[Ch. 2]$

- Energy, Entropy, and Availability Balances
- Phase Equilibria
	- Fugacities and activity coefficients
	- K-values
- Nonideal Thermodynamic Property Models
	- P-v-T equation-of-state models
	- Activity coefficient models
- Selecting an Appropriate Model

Thermodynamic Properties

- Importance of thermodynamic properties and equations in separation operations
	- –- Energy requirements (heat and work)
	- –Phase equilibria : Separation limit
	- –- Equipment sizing
- Property estimation
	- –- Specific volume, enthalpy, entropy, availability, fugacity, activity, etc.
	- Charles Corp. Used for design calculations
		- **Separator size and layout**
		- **Auxiliary components : Piping, pumps, valves, etc.**

Energy, Entropy and Availability , Balances

Energy Balance

- Continuous and steady-state flow system
- Kinetic, potential, and surface energy changes are neglected
- •First law of thermodynamics (conservation of energy)

(stream enthalpy flows + heat transfer + shaft work) $_{\text{leaving system}}$

- (stream enthalpy flows + heat transfer + shaft work)_{entering system}

 $= 0$

$$
\sum_{\text{out of}\atop \text{system}} (nh + Q + W_s) - \sum_{\text{into}\atop \text{system}} (nh + Q + W_s) = 0
$$

Entropy Balance

- The first law provides no information on energy efficiency
- Second law of thermodynamics

(stream entropy flows + entropy flows by heat transfer) $_{\text{leaving system}}$

- (stream entropy flows + entropy flows by heat transfer)_{entering system}
- = production of entropy by the process

$$
\sum_{\text{out of} \atop \text{system}} \left(ns + \frac{Q}{T_s} \right) - \sum_{\text{in to} \atop \text{system}} \left(ns + \frac{Q}{T_s} \right) = \left(\sum_{r} \frac{Q}{r} \right)
$$

- Production of entropy
- Irreversible increase in the entropy of the universe
- Quantitative measure of the thermodynamic inefficiency of a process

Availability (Exergy) Balance

- The entropy balance contains no terms related to shaft work
- The entropy is difficult to relate with power consumption
- Availability (exergy): Available energy for complete conversion to shaft work to shaft
- Stream availability function : $b = h T_0 s$

a measure of the maximum amount of stream energy that can be ^a measure of the maximum amount of stream energy that can be converted into shaft work if the stream is taken to the reference state

(Entropy balance) \times T₀ - (Energy balance)

$$
\sum_{\substack{\text{in to} \\ \text{system}}} \left[nb + Q\left(1 - \frac{T_0}{T_s}\right) + W_s \right] - \sum_{\substack{\text{out of} \\ \text{system}}} \left[nb + Q\left(1 - \frac{T_0}{T_s}\right) + W_s \right] = LW
$$

(stream availability flows + availability of heat + shaft work)_{entering system}

- (stream availability flows + availability of heat + shaft work) $_{\text{leaving system}}$
- = loss of availability (lost work)

Lost Work, Minimum Work, and **Second Law Efficiency**

- Lost work, $LW = T_0 \Delta S_{irr}$
	- The greater its value, the greater is the energy inefficiency
	- Its magnitude depends on the extent of process irreversibilities $\,$
	- Reversible process : *LW* = 0
- Minimum work of separation, W_{min}
	- Minimum shaft work required to conduct the separation
	- $-$ Equivalent to the difference in the heat transfer and shaft work

$$
W_{\min} = \sum_{\text{out of}\atop\text{system}} nb - \sum_{\text{in to}\atop\text{system}} nb
$$

• The second-law efficiency

*W*_{min} (minimum work of separation) (equivalent actual work of separation) min $\frac{m\text{in}}{+W_{\min}} =$ $=\frac{2}{LW+W}$ $\eta =$

Phase Equilibria

- The phase equilibria of the given system provide possible equilibrium compositions (separation limit)
- Equilibrium : Gibbs free energy for all phases is a minimum

 $G = G(T, P, N_1, N_2, ..., N_C)$

$$
dG = -SdT + VdP + \sum_{components} \mu_i dN_i
$$

 $dG_{system} = \sum_{phases} \Bigg[\sum_{components} \mu^{(p)}_i dN^{(p)}_i \Bigg]_{P.T}$ (at constant T & P) ,

 \equiv $=-\sum$ $\sum_{i=1}^{N}$ *p* $dN_i^{(1)} = -\sum dN_i^{(p)}$ (conservation of moles of each species, no reaction) *p* 2 $dN_i^{(1)} = -\sum_{p=2} dN_i^{(p)}$ (conservation of moles of each species, no reaction)
 $\mu_i^{(1)} = \mu_i^{(2)} = = \mu_i^{(N)}$

The chemical potential of a particular species in a multicomponent

$$
\mu_i^{(1)} = \mu_i^{(2)} = \dots = \mu_i^{(N)}
$$

system is identical in all phases at physical equilibrium.

Fugacities and Activity Coefficients

- Chemical potential
	- Units of energy Units of energy
	- Not easy to understand physical meaning
- More convenient quantities
	- $-$ Fugacity : pseudo-pressure $f_i = C \exp(\mu_i / RT)$
	- Equality of chemical potentials $\,\rightarrow$ equality of fugacities
	- \rightarrow Fugacity coefficient $\phi_i = f_i/P$ $\phi_i = f_i/y_i$
		- Ratio of fugacity and pressure
		- Reference : ideal gas
	- $-$ Activity $a_i = \bar{f}_i / f_i^0$
		- Ratio of fugacities
		- Reference: ideal solution
	- $\gamma_i = a_i / x_i = \overline{f}_i / x_i$ $\gamma_i^0 = T^{(1)} = T^{(2)} = \cdots = T^{(N)}$
		- Ratio of activity and composition
		- Departure from ideal solution behavior

$$
\overline{\phi}_i = \overline{f}_i / y_i P
$$

At equilibrium,

$$
\overline{f}_i^{(1)} = \overline{f}_i^{(2)} = \dots = \overline{f}_i^{(N)}
$$

$$
a_i^{(1)} = a_i^{(2)} = \dots = a_i^{(N)}
$$

$$
T^{(1)} = T^{(2)} = \dots = T^{(N)}
$$

$$
P^{(1)} = P^{(2)} = \dots = P^{(N)}
$$

K-Values

- Phase equilibrium ratio: ratio of mole fractions of a species present in two phases at equilibrium
- K-value (vapor-liquid equilibrium ratio; K-factor)
	- : for the vapor-liquid case

$$
K_i \equiv y_i \, / \, x_i
$$

- Distribution coefficient (liquid-liquid equilibrium ratio)
	- : for the liquid-liquid case

$$
K_{Di} \equiv x_i^{(1)} / x_i^{(2)}
$$

• Relative volatility : for the vapor-liquid case

$$
\alpha_{ij} \equiv K_i/K_j
$$

• Relative selectivity: for the liquid-liquid case

$$
\beta_{ij} \equiv K_{Di} / K_{Dj}
$$

Phase Equilibrium Calculations (VLE)

$$
\overline{f}_{iV} = \overline{f}_{iL}
$$
 For vapor–liquid equilibrium

• Ideal gas + Ideal solution

$$
y_i P = x_i P_i^{sat} \qquad K_i = \frac{y_i}{x_i} = \frac{P_i^{sat}}{P}
$$

• Phi-Phi approach: equation-of-state form of K-value

$$
\overline{\phi}_{iV} y_i P = \overline{\phi}_{iL} x_i P \qquad K_i = \frac{\phi_{iL}}{\overline{\phi}_{iV}}
$$

• Gamma-Phi approach : activity coefficient form of K-value

$$
\overline{\phi}_{iV} y_i P = \gamma_{iL} x_i f_{iL}^o \qquad K_i = \frac{\gamma_{iL} f_{iL}^o}{\overline{\phi}_{iV} P} = \frac{\gamma_{iL} \phi_{iL}}{\overline{\phi}_{iV}}
$$

Nonideal Thermodynamic **Property Models**

- No universal equations are available for computing, for nonideal mixtures, values of thermodynamic properties such as density, enthalpy, entropy, fugacities, and activity coefficients as functions of T , P, and phase composition.
	- \Rightarrow (1) P-v-T equation-of-state models (2) Activity coefficient or free-energy models
- P-v-T equation-of-state models

Nonideality is due to (1) the volume occupied by the molecules and (2) intermolecular forces among the molecules

e.g. the van der Waals equation

$$
P = \frac{RT}{v - b} - \frac{a}{v^2}
$$

Useful Equations of State

• Mixing rules

$$
a = \sum_{i=1}^{C} \left[\sum_{j=1}^{C} y_i y_j (a_i a_j)^{0.5} \right] \qquad b = \sum_{i=1}^{C} y_i b_i
$$

Models for Activity Coefficients

 $\gamma_i = \gamma_i(T, x_1, x_2, \ldots, x_C)$

Table 2.9 Empirical and Semitheoretical Equations for Comelating Lignid-Phase Activity Coefficients of Binary Pairs

Notes on Using Phase Equilibrium Models

- Low pressure VLE
	- Gamma-Phi approach recommended
	- Poynting correction (modified Raoult**'**^s law) required for medium pressure
	- Cannot be applied when T or P condition exceeds critical T, P
- High pressure VLE
	- Phi-Phi approach recommended
	- Special care should be taken for polar components (alcohols, water, acids, amines, etc.)
- Check binary interaction parameters matrix
	- If parameters exist, use them
	- If parameters do not exist,
		- **Try to obtain by regression of experimental data**
		- Use group contribution method (e.g. UNIFAC)
- Special applications \rightarrow Specialized models required
	- Polymer solution
	- Electrolyte solution
	- Biomolecular applications

Selecting an Appropriate Model

(LG): light gases (HC): hydrocarbons (PC): polar organic compounds (PC): polar organic (A): aqueous solutions (A): aqueous (E): electrolytes

- If the mixture is (A) with no (PC)
	- If (E) are present \rightarrow modified NRTL equation
	- -- If (E) are not present \rightarrow a special model
- If the mixture contains (HC), covering a wide boiling rage \rightarrow The corresponding-states method of Lee-Kesler-Plöcker
- \bullet If the boiling range of a mixture of (HC) is not wide
	- For all T and P \rightarrow the P-R equation
	- For all P and noncryogenic T \rightarrow the S-R-K equation
	- For all T, but not P in the critical region \rightarrow the Benedict-Webb-Rubin-Starling method
- If the mixture contains (PC)
 $-$ If (LG) are present \rightarrow the PS
	- If (LG) are present \rightarrow the PSRK method
	- If (LG) are not present \rightarrow a suitable liquid-phase γ method