Unsteady diffusion equation

Model equations

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} , \ \alpha = 2$$

$$\frac{\partial T}{\partial x}_{x=0} = 0 , T(1,t) = 0 , T(x,0) = 1$$

Geometry

Model navigator에서 '1. 1.'과 같은 model을 설정하고 길이가 1인 선분을 그리고 격자를 120개로 나눈다.

Physics

'Physics / Subdomain settings' 에서 model식을 확인하고, 문제의 조건에 맞게 상수를 입력한다.

Initial condition

식에 대한 상수를 입력한 후, 옆의 'Init' 탭으로 가서 초기조건을 입력한다.

FEMI Elle Ed	LAB - Geom lit Options Dr	1/Heat Trans raw Physics	sterbyCond Mesh Solve A. =\$ =\$ =	uction (ht) Bostprocess ≌ ØØ 🗩	ing Multiphysic PP+	s ∐elp 'αΩΩ⊚	60 8				
		1	Subdomain Equation -⊽ (k⊽T) = Q -Subdomain set 1 Select by ♥ Active in t	* htmad (feat - 1 iection	- Heat Transf	er by Cond s ⁴ - T ⁴), T= temp ment ial value	OK Carx	n e			
	1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
Refined Refined Refined (-0.0957)	mesh consists mesh consists mesh consists	of 30 elements. of 60 elements. of 120 elements	i. RD []							ī	Memory: (9.6 / 16.8

Boundary condition

Physics / Boundary setting 에서 경계조건을 입력한다. (경계 1은 온도기울기가 0 이므로 단열상태로 지정했다.)

Solve

편미분방정식이므로 Solve / Solver parameters 에서 'Time dependent'항을 눌러 시간을 설정한다.

Result

Solve

Postprocessing

Postprocessing / Domain plot parameter 에서 LineExtrusion 항으로 간 후, Extrusion plot으로 설정하면 입체적 결과가 나온다.

	Ime=1 Line. Temperature
×10 ⁻³	Domain Plot Parameters
3	General LineExtrusion Port
8	
	Plot type
7	C Line plot
	y-axis data
6	Predefined quantities: Temperature
5	Expression: T Smooth
	Subdomain selection
4	
	O Expression
3	
2	
1	
o •	Line settings
	OK Cancel Apply

Postprocessing

Solve

