NANO means new structures and properties

 Optical, electrical, catalytic, and magnetic properties are size-dependent.

Dark-field image of Ag nanoparticles with various sizes and shapes.

C. A. Mirkin et al.

Nanotechnology

DOI: 10.1002/anie.200904359

Gold Nanoparticles for Biology and Medicine

David A. Giljohann, Dwight S. Seferos, Weston L. Daniel, Matthew D. Massich, Pinal C. Patel, and Chad A. Mirkin*

Biodetection: Why is it important?

<i>Genetic and Proteomic Analysis</i>	Disease Identification	Pharmacogenomics
Genomics and Proteomics	Protein Targets	The study of how an individual's genetic inheritance affects the
	Nucleic Acid Targets	body's response to drugs.
Forensics		
	*Early Disease Diagnosis	Developing personalized drugs
Molecular Biology	<i>is the Best way to Cure or</i> <i>Prevent Serious Diseases</i>	based on individual's genetic makeup

What are the conventional biodetection methods?

Protein Detection:

Enzyme Linked Immuno-Sorbent Assay (ELISA)

Western Blot, Protein chips...

Nucleic Acid Detection:

Polymerase Chain Reaction (PCR) coupled with molecular fluorophore probes

DNA chips...

Enzyme Linked ImmunoSorbent Assay (ELISA)

General detection Limit: ~ pM (~100 μL sample volume) Limited multiplexing capability, low reproducibility, and ~3log quantification range

Step 7. Signal Detection

Molecular Fluorophore Method and Polymerase Chain Reaction (PCR)

Molecular Beacons

Detection limit: ~ 10 copies of DNA

Drawbacks

ELISA

Sensitivity (high fM ~ low pM)

Nonspecific Binding and Protein Denaturation on Surface

Reproducibility

Quantification

Limited Multiplexing

PCR

Complexity

Cost

Contamination

Limited Multiplexing

Selectivity

Portability

Optimization

Challenges

Can we come up with a detection system that is good with respect to any bioanalytes including proteins, DNA, RNA, and small molecules and has sensitivity of PCR but does not have limitations of PCR and ELISA-based assays ?

Gold Nanoparticle Probes: Synthesis

Frens, G. Nature Phys. Sci. 1973, 241, 20.

DNA-Nanoparticle Conjugates

SH Na⁺ SH SH SH SH

> densely functionalized (hundreds of DNA strands/particle)

centrifuge, isolate, redisperse in buffer

DNA-Directed Nanoparticle Assembly

Figure 6. "Nanoflares" are gold nanoconjugates functionalized with oligonucleotide sequences complementary to a specific nucleic acid target (messenger RNA) hybridized to short fluorescent sequences. In the absence of a target the nanoflares are dark, because of quenching by the gold nanoparticle. In the presence of a target binding displaces the short flare through the formation of a longer (more energetically favorable) duplex. The result is a fluorescence signal inside the cell, which indicates the target has been detected. Scale bar: 20 µm. Adapted from Ref. [87], with permission from the American Chemical Society; Copyright 2007.

Nanoparticle-Based Biomolecule Detection Methods

Y. W. Cao, R. Jin, **J.-M. Nam**, C. S. Thaxton, C. A. Mirkin, *J. Am. Chem. Soc.* **125**, 14676 (2003).

R. C. Bailey, **J.-M. Nam**, C. A. Mirkin, J. T. Hupp, *J. Am. Chem. Soc.* **125**, 13541 (2003).

*None thus far reached PCR-like sensitivity (~ 10 copies in entire sample)

Bio-Bar-Code Amplification Assay

Probe Design and Preparation

Protein Detection and Bar-Code DNA Amplification/Identification

Jwa-Min Nam, C. Shad Thaxton, Chad. A. Mirkin, Science 301, 1884 (2003).

Scanometric Response of Bar-Code DNA

Detection limit: ~ 400 probes

Storhoff, J. J. et al., Biosensors and Bioelectronics 2004, 19, 875.

PSA in 0.1 M PBS solution with background proteins after PCR (total volume: 10 μl)

In buffer solution

10⁶ more sensitive than conventional PSA assays (~ 20 copies of proteins in entire sample)

*still need PCR and signal saturated from 3 fM

Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A. Science 2003

The bio-bar-code assay works because...

- The target binding portion of the assay is homogeneous.

- The use of a large number of bio-bar-codeloaded NP probe provides a high ratio of barcode DNA to labeling antibody that greatly increases assay sensitivity.

-Both gold nanoparticle probes and magnetic particles are dynamically interacting

- Synthetic DNA is easier to detect on a chip than proteins.

- Large concentrations of the probes can be used to efficiently bind protein targets and to reduce the time required for high sensitivity detection experiments (large number of probes and large number of antibodies per probe).

- Silver enhancement on immobilized gold nanoparticles.

- Accurate and sensitive chip reader that measures scattered light from developed silver spots.

- Magnetic separation is quick and effective.

Detection Limits of Protein Assays (Chemical Review 2005)

	assay	target	protein in saline	protein in serum
	optical ⁷² (Au nanoshells)	rabbit IgG	0.88 ng/mL (~4.4 pM) ^a	0.88 ng/mL (~4.4 pM) ^a
	optical ⁷⁴ (Au nanoparticles)	IgE and IgG1	~20 nM	
nanostructure -based methods	magnetic relaxation ⁹⁸ (iron oxide nanoparticles)	adenovirus (ADV) and herpes simplex virus (HSV)	100 ADV/ 100 uL	50 HSV/ 100 uL
	scanometric ⁷⁹ (Au nanoparticles with Ag amplification)	mouse IgG	200 pM	
	Raman ⁸² (Au nanoparticles with Raman labels)	prostate-specific antigen		30 fM
	surface plasmon resonance ^{83,84} (triangular Ag particles on surfaces)	streptavidin(S A) and anti-biotin (AB)	~1 pM SA and ~700 pM AB	
	electrical ¹¹⁰ (single-walled carbon nanotubes)	10E3 antibody to U1A RNA splicing factor	~1 nM	
	electrical ²⁰ (Si nanowires)	streptavidin	10 pM	
	bio-bar-code amplification ⁷⁵ (Au nanoparticles with Ag amplification)	prostate-specific antigen	30 aM (3 aM) ^b	(30 aM) ^b
molecular fluorophore methods	enzyme-linked immunosorbent assay	various	pM range	pM range
electrochemic al methods	electrochemical amplification ¹³⁷ (oligonucleotide reporter molecules)	lgG	13 fM	
enzyme- based	immuno-PCR ⁷⁶	bovine serum albumin	2 fM	
amplification methods	rolling circle amplification ⁷⁷	prostate-specific antigen	3 fM	

The Bio-Bar-Code Assays for Protein Targets

PSA (Prostate & Breast Cancer Marker)	ADDL c-Tau (Alzheimer's Disease Markers)		p24 (HIV Marker)	
Our sensitivity: 30 aM	Our sensitivity: <mark>8 aM</mark> (ADDL) and <mark>80 aM</mark> (c-Tau)		Our sensitivity: 6.3 aM	
Benchmark Sensitivity: ~ 3 pM	Benchmark Sens	itivity: 100 pM	Benchmark Sensitivity: ~ 420 fM	
Other Sensitivity: ~ fM (Immuno- PCR)	(ADDL) & 0.2 pM (total Tau) *Never been detected in human CSF samples before <i>PNAS</i> 2005: 2 nd Most Downloaded PNAS Paper in Feb 2005		Other Sensitivity (PCR-Based RNA Test): ~ 50 copies/ml *Tested in blood samples (sensitivity: ~ 22 RNA copies/ml)	
* Tested in serum samples				
Science 2003			Nature Biotechnol. To be submitted	
Prion (Mad Cow Disease Marker)		Ca (Hea	ardiac Troponin I art Disease Marker)	
		Our se	ensitivity: 50 aM	

Our sensitivity: 100 aM (fluorophore-based method)

Benchmark Sensitivity: ~ pM

*Never been detected in real Mad Cow samples

Unpublished result

Benchmark Sensitivity: ~ 42 pM

Other Sensitivity: 3.35 pM

*Routinely used in Emergency Room (~ 1 billion dollar market) Unpublished result

Hallmarks of Alzheimer's Disease (from brain slices)

Plaques (CERAD)

The brain of the Alzheimer's patient will show accumulations of a normal body-protein - beta-amyloid - which has been transformed into a form which is toxic to the brain. This transformed beta-amyloid is found between the nerve-cells of the brain and becomes surrounded by the remnants of the cells which it has killed forming so-called plaques.

Tangles (Braak & Braak) The other marker of Alzheimer's Disease is known as a Neurofibrillary Tangle. This tangle is caused by the build-up of a protein called Tau inside the nerve-cells of the brain.

Current Diagnostic Method: Visual Encoding

In this process the patient first lies down on a platform with an electrical device around his or her head and then is gently pushed inside the MRI machine. The patient can then look at a screen on which various pictures are flashed up – in this case, a series of repeated images of landscapes and street-scenes, interspersed every now and then with completely new and unfamiliar images. Meanwhile the MRI machine can take cross-sectional photographs – "slices" – of the person's brain whilst they are carrying out these tasks - a process known as *Visual Encoding*.

In Alzheimer's patients, there appears to be much less activity in this area (see figure below) than in healthy people (see figure above)

And "the localized surface plasmon resonance method for ADDL detection" by Van Duyne Group (Nano. Lett. 2004, ASAP Article)

ADDL & AD

One subject was an aged male that scored very high on the Mini Mental State Examination (MMSE), which is inconsistent with the later pathological stages of the disease, whereas the other subject had pathological signs of infarctions in addition to AD. These two AD subjects that are outliers in our assay could be false positives of current diagnostic methods that consider both clinical and pathological data.

The assays for control subjects showed a consistently lower level of ADDLs than the assays for subjects diagnosed with the disease.

Bio-Barcode-Based Alzheimer's Disease (AD) Diagnosis

"The first example of human fluid-based AD diagnosis"

The association of Alzheimer's Disease with a protein in the brain called amyloid-beta-derived diffusible ligand, or ADDL.

Detection of ADDL in spinal fluid.

Samples of the spinal fluid of 30 people, 15 who had Alzheimer's disease and 15 who did not.

Assay results show that at least some ADDL in all the patients, which is an indication that everyone may have a baseline level of the protein.

The concentration of ADDL increases as the disease gets worse, so the progression of the illness could be followed.

Proc. Natl. Acad. Sci. USA **102**, 2273, (2005): **From the Cover**

Cover Story, Chemical & Engineering News (2005)

Associated Press (AP) Feb 22, 2005 (CNN, ABC, NBC, CBS, Fox, USA Today, Forbes, NY Times, LA Times, Washington Post, BBC, Business Week, and 2005 NSF Congress Hearing)

Bio-Bar-Code Amplification Assay for DNA

Objectives

- PCR-like sensitivity with bio-bar-code method for DNA detection without the need for enzymes (simple but sensitive).
- Quantitative assay with wide detecting range
- High Selectivity (Differentiate Single Base Mismatch)
- With less effort, cost, and time

Journal of American Chemical Society, 2004, *126*, 5932.

Journal of American Medical Association, 2004, *292*, 1291.

Journal of Chemical Education, 2004, *81*, 1386.

Chicago Tribune, Bar-Code Technology Tapped for DNA Tests (April 28, 2004).

The New York Times, Tiny is Beautiful: Translating 'Nano' into Practical (Feb 22, 2005).

Bio-Bar-Code-Based DNA Detection with 30 nm NP Probes

ME-Fluoroscence Measurement: actual ratio is 70(Bar):1(Tar)

~360 DNA strands on each 30 nm NP

Overall, stronger signals and higher sensitivity than 20 nm probes.

Detection limit is 500 zM (~10 target DNA strands)

- * The detection limit of scanometric method: ~ 50 fM
- * The detection limit of fluorescence microscope (Tan et al; JACS 2003): ~ 800 aM

Single base mismatch (SNP)

At 500 aM target DNA concentration (after incubating at 45 °C for 3 min)

Perfect Match

G Mismatch: 5'GGATGATTGTTAAATGATAAGGAT 3'

Perfect Match: 5'GGATTATTGTTAAATGATAAGGAT 3'

Detection Limits of Nucleic Acid Assays (Chemical Review 2005)

	assay	ss DNA	PCR products	genomic DNA
	colorimetric ²⁹ (cross-linked Au nanoparticles)	~10 nM		
	colorimetric ³⁶ (non-cross-linked Au nanoparticles)	60 nM		
	magnetic relaxation ⁹⁷ (iron oxide nanoparticles)	20 pM		
nanostructure-	electrochemical ⁹⁶ (nanoparticles)	270 pM		
methods	scanometric ^{35,66,67} (Au nanoparticles with Ag amplification)	50 fM	100 aM ^b	200 fM
	Raman spectroscopy ⁶⁸ (Au nanoparticles with Ag amplification)	~1 fM		
	electrical93 (Au nanoparticles with Ag amplification)	500 fM		
	electrical99 (Si nanowire)	10 fM		
	electrical ¹⁰³ (carbon nanotube)	54 aM		
	resonant light-scattering ⁶¹⁻⁶⁶ (metal nanoparticles)	170 fM ^b		33 fM
	fluorescence ⁵⁶ (ZnS and CdSe quantum dots)	2 nM		
	surface plasmon resonance ⁴¹ (Au nanoparticles)	10 pM		
	quartz crystal microbalance94 (Au nanoparticles)	~1 fM		
	laser diffraction ⁴² (Au nanoparticles)	~50 fM		
	fluorescence ⁴⁵ (fluorescent nanoparticles)	~1 fM		
	bio-bar-code amplification ⁷¹ (Au nanoparticles with Ag amplification)	500 zM		
other non- enzymatic based methods	fluorescence ³⁵ (molecular fluorophores)		~600 fM ^b	
	fluorescence (dendrimer amplification) ¹³⁴		2.5 ug	
	electrochemical amplification ¹³⁶ (electroactive reporter molecules)	100 aM		

Bio-Barcode Amplification Assay

*Target molecules can be proteins, DNA, RNA, metal ions, etc.

Articles:

 J.-M. Nam, S.-J. Park, C. A. Mirkin, *J. Am. Chem. Soc.* 124, 3820 (2002).
J.-M. Nam, C. S. Thaxton, C. A. Mirkin, *Science* 301, 1884 (2003).
J.-M. Nam, S. I. Stoeva, C. A. Mirkin, *J. Am. Chem. Soc.* 126, 5932 (2004).
D. Georganopoulou, L. Chang, J.-M. Nam, S. Klein, C. A. Mirkin *Proc. Natl. Acad. Sci. USA* 102, 2273 (2005).

5. K. A. Shaikh, K. S. Ryu, E. D. Goluch, **J.-M. Nam**, J. Liu, C. S. Thaxton, Y. Liu, C. A. Mirkin C. Liu, *Proc. Natl. Acad. Sci. USA* 102, 9745 (2005).

6. J.-M. Nam, A, R, Wise, J. T. Groves, *Anal. Chem.* 77, 6982 (2005).

7. J.-M. Nam, B. K. Oh, S. W. Lee, C. A. Mirkin, *Small* 2, 103 (2006).

Reviewed and Featured:

Science **301**, 1827 (2003). Angew. Chem. Int. Ed. **43**, 5730 (2004). Nature Methods (2004). Discovery Medicine **3**, 59 (2004). J. Am. Med. Assoc. (2004). J. Chem. Ed. (2004). New York Times Feb 22, (2005). Scientific American **292**, 86 (2005). Chemical Review ASAP Article (2005). Associated Press, BBC, ABC, NBC, CBS, FOX, Forbes, Business Week...

Biomolecule detection technology

	Concentration	Targets/50u	L Targets/diseases
	10 ⁻³ = Millimolar	~3 x 10 ¹⁶	Colorimetric/ enzymatic chemistry blood sugar (diabetes)
	10 ⁻⁶ = Micromolar	~3 x 10 ¹³]
	10 ⁻⁹ = Nanomolar	~3 x 10 ¹⁰	ELISA/ chemiluminescence Tropomin, CK-MB, BNP, βHCG
	10 ⁻¹² = Picornolar	~3 x 10 ⁷	
	10 ⁻¹⁵ = Ferntomolar	~3 x 10 ⁴	Bio-barcode technology
ines.	10 ⁻¹⁸ = Attornolar	~30	Alzeimer's disease, nvCJD (Mad Cow), Ovarian, Breast
	10 ⁻²¹ = Zeptomolar	~0.3	and other cancers, Anthrax, HIV, Ebola, Smail Pox
			Current Opinion in Chemical Biology

The bio-barcode assay provides access to a target concentration range well below that of conventional ELISAs. This ultra-sensitivity provides the ability to utilize new markers for disease screening in biodiagnostics.

Current Opinion in Chemical Biology, 10, 11-19 (2006)

