Bioheat Transfer

introduction

- 1. Deriving Governing equation
- 2. Boundary conditions
- 3. Deriving The bioheat transfer equation
- 4. Governing Equations for heat condition in various coordinate systems
- 5. Problem formulation

The Bioheat Transfer Equation for Mammalian Tissue

1. The mammalian tissue system

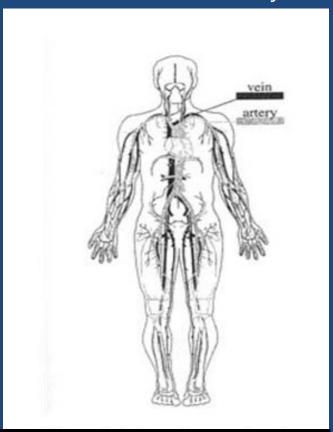


Figure 1. Arteries and veins of the circulatory system

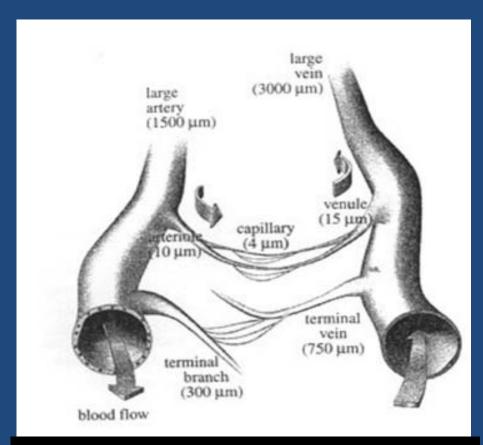
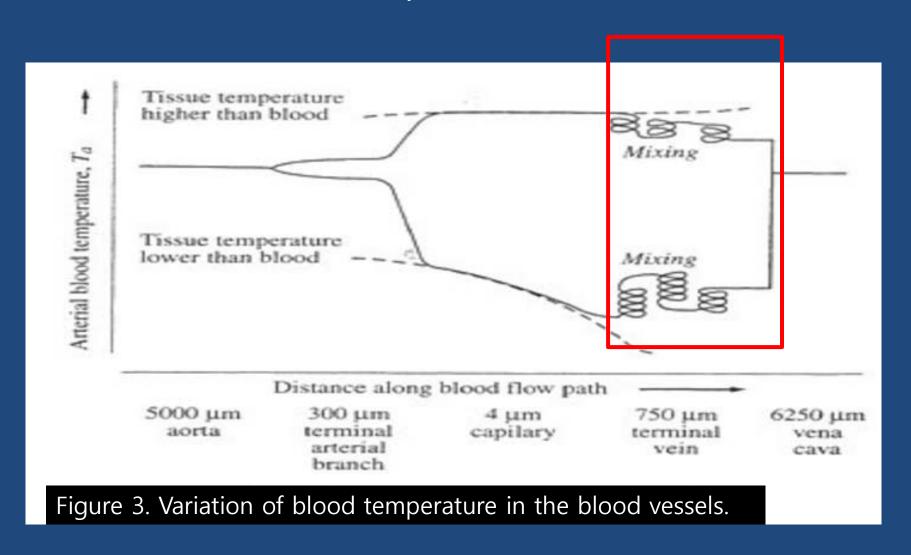


Figure 2. variation of blood vessel sizes.

The Bioheat Transfer Equation for Mammalian Tissue



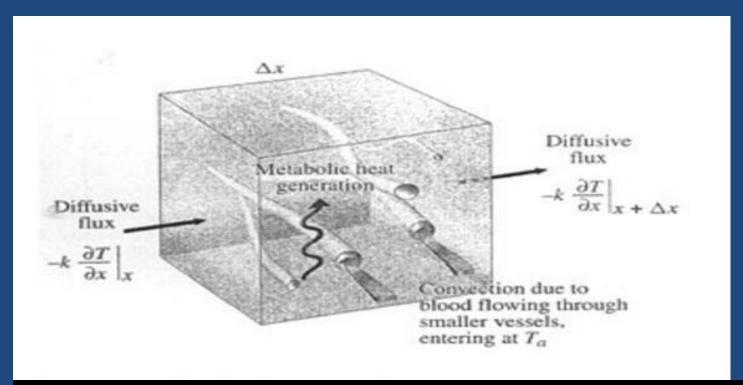


Figure 4. Idealized heat transfer in a tissue showing metabolic heat generation Q and convective heat transfer due to the passage of blood.

The bioheat transfer equation

Assumptions

- 1) Homogeneous material with isotropic thermal properties
- 2) Large blood vessels are ignored
- 3) Blood capillaries are isotropic

Blood is at arterial temperature but quickly reaches the tissue temperature by the time it reaches the end of the artery system.

The governing bioheat equation

$$\underbrace{\rho c \frac{\partial T}{\partial t}} = \underbrace{k \nabla^2 T} + \underbrace{\rho_b c_b V_b^v (T_a - T)} + \underbrace{Q}$$

Change in storage

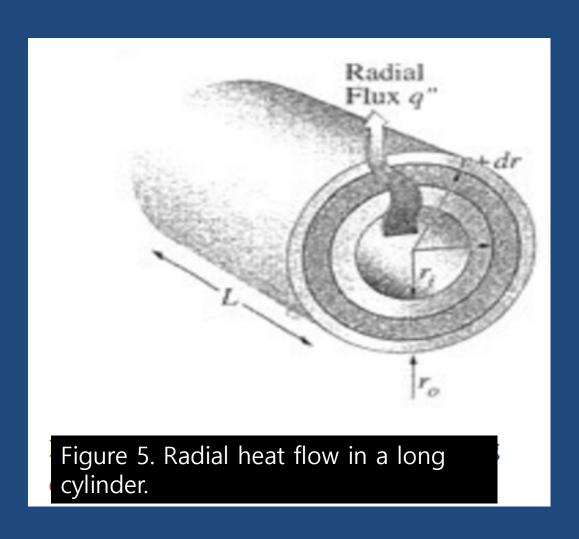
conduction

Convection

Due to blood flow

generation

Governing Equation Derived in Cylindrical



3.4 Governing Equation Derived in Cylindrical

$$[2\pi rLq_{r}^{''}-2\pi(r+\triangle r)Lq_{r+\triangle r}^{''}+2\pi r\triangle rLQ]\triangle t=2\pi r\triangle rL\rho c_{p}\triangle T$$

$$-\frac{((r+\Delta r)q_{r+\Delta r}^{''}-rq_{r}^{''})}{r\Delta r}+Q=\rho c_{p}\frac{\Delta T}{\Delta t}\\-\frac{1}{r}\frac{\partial}{\partial r}(rq_{r}^{''})+Q=\rho c_{p}\frac{\partial T}{\partial t}$$

Using Fourier's law:
$$k\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial\,T}{\partial r}) + Q = \rho c_p \frac{\partial\,T}{\partial t}$$

Governing Equation in cylindrical:

$$\underbrace{\frac{\partial T}{\partial t}} = \underbrace{\frac{k}{\rho c_p} \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial T}{\partial r})}_{} + \underbrace{\frac{Q}{\rho c_p}}_{}$$

storage

conduction

generation

Cartesian

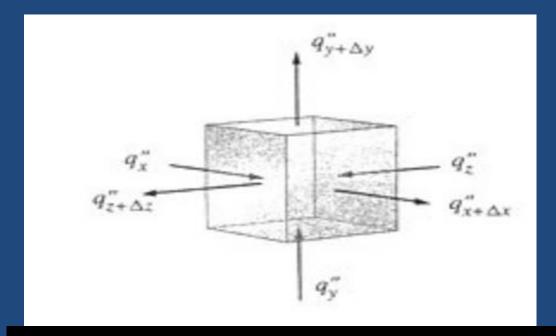


Figure 5, Energy balance over a control volume in a Cartesian coordinate system.

$$\frac{k}{\rho c_p} \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right] + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

Cylindrical

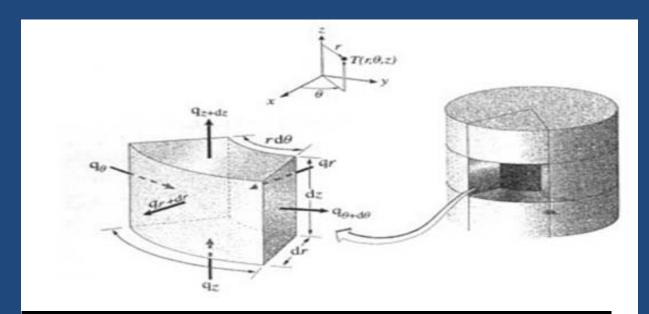


Figure 6. Energy balance over a control volume in a cylindrical coordinate system.

$$\frac{k}{\rho c_p} \left[\frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial T}{\partial r}) + \frac{1}{r^2} (\frac{\partial^2 T}{\partial \varPhi^2}) + \frac{\partial^2 T}{\partial z^2} \right] + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

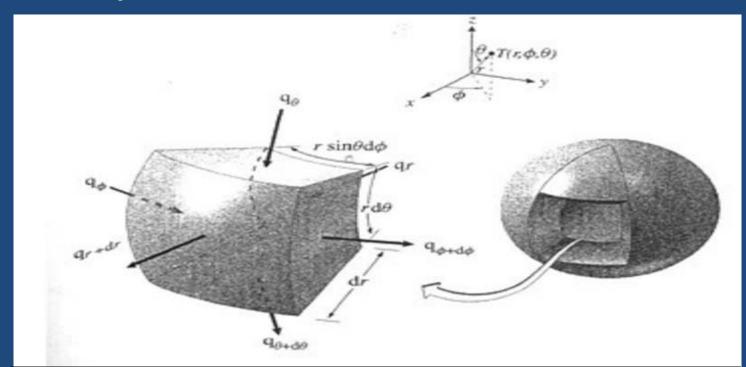


Figure 7.Energy balance over a control volume in a spherical coordinate system.

$$\frac{k}{\rho c_p} \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial T}{\partial r}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \varPhi^2} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial T}{\partial \theta}) \right] + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

• Symbolically (Any coordinate system)

$$\frac{k}{\rho c_p} \nabla^2 T + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

An Algorithm to Solve Transport Problem

Schematic of the problem

Governing Equation

- Is spatial variation needed (check Bio number)
- What geometry/coordinate system?
- Which terms should be dropped?

Boundary Conditions

- How many conditions are necessary?
- What type of boundary conditions?
- Is an initial condition needed (not for steady state)?

Property values

- Thermal diffusivity
- Thermal conductivity, Density, and specific heat

Solution Technique

- Is there an analytical solution? Charts?
- Need numerical solution?

Improved Understanding

- How does temperature vary with:
 - Position
 - time

Figure 8. A step by step procedure to solve heat and mass transfer problems, showing the steps in case of a heat transfer problem

Summary

- The governing Bioheat Transfer Equation for Mammalian Tissue

$$\underbrace{\rho c \frac{\partial \, T}{\partial t}}_{ \text{Change in storage}} = \underbrace{k \nabla^2 \, T}_{ \text{conduction}} + \underbrace{\rho_b c_b \, V_b^v (\, T_a - \, T)}_{ \text{Convection}} + \underbrace{Q}_{ \text{generation}}_{ \text{Due to blood flow}}$$

- Governing Equation for Heat Condition in Various Coordinate Systems
 - Cartesian

$$\frac{k}{\rho c_p} \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right] + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

Cylindrical
$$\frac{k}{\rho c_p} \left[\frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial T}{\partial r}) + \frac{1}{r^2} (\frac{\partial^2 T}{\partial \Phi^2}) + \frac{\partial^2 T}{\partial z^2} \right] + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

$$\qquad \text{Spherical} \quad \frac{k}{\rho c_p} \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial T}{\partial r}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \varPhi^2} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial T}{\partial \theta}) \right] + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

• Symbolically (Any coordinate system)
$$\frac{k}{\rho c_p} \nabla^2 T + \frac{Q}{\rho c_p} = \frac{\partial T}{\partial t}$$

Summary

- Problem Formulation
 - 1.It is the development of mathematical formulation of a physical problems, written in terms of governing equation and boundary conditions.
 - 2. Follow the steps as shown in Figure 8.