Chapter 14: Properties and Applications of Ceramics

ISSUES TO ADDRESS...

- In what ways are ceramic phase diagrams different from phase diagrams for metals?
- How are the mechanical properties of ceramics measured, and how do they differ from those for metals?
- How do we classify ceramics?
- What are some applications of ceramics?

Ceramic Phase Diagrams

$MgO-Al_2O_3$ diagram:

Fig. 14.2, Callister & Rethwisch 9e. [Adapted from B. Hallstedt, "Thermodynamic Assessment of the System MgO–Al₂O₃," J. Am. Ceram. Soc., 75[6], 1502 (1992). Reprinted by permission of the American Ceramic Society.]

Mechanical Properties

Ceramic materials are more brittle than metals. Why is this so?

- Consider mechanism of deformation
 - In crystalline, by dislocation motion
 - In highly ionic solids, dislocation motion is difficult
 - few slip systems
 - resistance to motion of ions of like charge (e.g., anions) past one another

Flexural Tests – Measurement of Elastic Modulus

- Room T behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.

li

-- tensile tests are difficult for brittle materials.

• Determine elastic modulus according to:

Flexural Tests – Measurement of Flexural Strength

• 3-point bend test to measure room-*T* flexural strength.

Classification of Ceramics

Ceramics Application: Die Blanks

- Die blanks:
 - -- Need wear resistant properties!
- Die surface:
 - -- 4 µm polycrystalline diamond particles that are sintered onto a cemented tungsten carbide substrate.
 - -- polycrystalline diamond gives uniform hardness in all directions to reduce wear.

Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.

Ceramics Application: Cutting Tools

- Tools:
 - -- for grinding glass, tungsten, carbide, ceramics
 - -- for cutting Si wafers
 - -- for oil drilling
- Materials:
 - -- manufactured single crystal or polycrystalline diamonds in a metal or resin matrix.
 - -- polycrystalline diamonds resharpen by microfracturing along cleavage planes.

oil drill bits

Single crystal diamonds

blades

polycrystalline diamonds in a resin matrix.

Photos courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.

Ceramics Application: Sensors

- Example: ZrO₂ as an oxygen sensor
- Principle: Increase diffusion rate of oxygen Ca2+ to produce rapid response of sensor signal to change in oxygen concentration
- Approach:
 - Add Ca impurity to ZrO₂:
 - -- increases O²⁻ vacancies $CaO \overline{ZrO_2} Ca_{Zr} + V_0 + \frac{1}{2}O_2$
 - -- increases O²⁻ diffusion rate
- Operation:
 - -- voltage difference produced when O²⁻ ions diffuse from the external surface through the sensor to the reference gas surface.
 - magnitude of voltage difference
 ∞ partial pressure of oxygen at the external surface

A substituting Ca^{2+} ion removes a Zr^{4+} ion and an O^{2-} ion.

Refractories

- Materials to be used at high temperatures (e.g., in high temperature furnaces).
- Consider the Silica (SiO_2) Alumina (AI_2O_3) system.
- Silica refractories silica rich small additions of alumina depress melting temperature (phase diagram):

Advanced Ceramics: Materials for Automobile Engines

- Advantages:
 - Operate at high temperatures – high efficiencies
 - Low frictional losses
 - Operate without a cooling system
 - Lower weights than current engines

- Disadvantages:
 - Ceramic materials are brittle
 - Difficult to remove internal voids (that weaken structures)
 - Ceramic parts are difficult to form and machine

- Potential candidate materials: Si₃N₄, SiC, & ZrO₂
- Possible engine parts: engine block & piston coatings

Advanced Ceramics: Materials for Ceramic Armor

Components:

- -- Outer facing plates
- -- Backing sheet

Properties/Materials:

- -- Facing plates -- hard and brittle
 - fracture high-velocity projectile
 - $-AI_2O_3$, B_4C , SiC, Ti B_2
- -- Backing sheets -- soft and ductile
 - deform and absorb remaining energy
 - aluminum, synthetic fiber laminates

Nanocarbons

- Fullerenes spherical cluster of 60 carbon atoms, C₆₀
 - Like a soccer ball
- Carbon nanotubes sheet of graphite rolled into a tube
 - Ends capped with fullerene hemispheres

AMSE 205 Spring '2016

Fig. 12.19, *Callister* & *Rethwisch 8e.*

Nanocarbons (cont.)

- Graphene single-atomic-layer of graphite
 - composed of hexagonally sp^2 bonded carbon atoms

Fig. 14.22, Callister & Rethwisch 9e.

• **Graphenes** – Sheet of graphite

• Synthesis of Nanomaterials

AMSE 205 Spring '2016

Applications of Nanomaterials (0-D)

Applications of Nanomaterials (1-D) **NW Biosensor**

NW Transistor

Chapter 14 - 18

AMSE 205 Spring '2016

Applications of Nanomaterials (1-D)

NW solar cells

NW Water Splitting for H₂ gas

Figure 3. Structural characterization of the nanotree heterostructures. a, False-colored, large-scale SEM image of a Si/TiO₂ nanotree array. b, Comparison of the optical images of a TiO₂ nanowire substrate, a Si nanowire substrate, and a Si/TiO₂ nanotree substrate. c, SEM image of the details of a nanotree heterostructure. d, Magnified SEM image showing the large surface area of the TiO₂ segment used for water oxidation. The scale bars are 10 μ m (a) and 1 μ m (c, d).

AMSE 205 Spring '2016

Chapter 14 - 19

Peidong Yaı

Applications of Nanomaterials (3-D)

TE Power Generation (TEG) for Hybrid Cars

Radioisotope thermoelectric generator

AMSE 205 Spring '2016

Summary

- Room-temperature mechanical behavior flexural tests
 - -- linear-elastic; measurement of elastic modulus
 - -- brittle fracture; measurement of flexural modulus
- Categories of ceramics:
 - -- glasses

-- clay products

- -- refractories
- -- cements -- advanced ceramics