Chapter 3: Fundamentals of Crystallography

ISSUES TO ADDRESS...

- What is the difference in atomic arrangement between crystalline and noncrystalline solids?
- How are crystallographic directions and planes named?
- Under what circumstances does a material property vary with the measurement direction?

Energy and Packing

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals

-many ceramics -some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures
 -rapid cooling
- "Amorphous" = Noncrystalline = Vitreous = Glassy

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

- 7 crystal systems
- 14 crystal lattices

a, *b*, and *c* are the lattice constants

 Table 3.1
 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

	Seven			
	Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
WileyPLUS: VMSE Crystal Systems and Unit Cells for Metals	Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	aaa
	Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
	Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a a
	Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	a a a
	Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a b
	Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	
	Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	e a a

Point Coordinates

Point coordinates for unit cell center are

a/2, b/2, c/2 $\frac{1}{2}\frac{1}{2}\frac{1}{2}$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Crystallographic Directions

Algorithm

Determine coordinates of vector tail, pt. 1:
 x₁, y₁, & z₁; and vector head, pt. 2: x₂, y₂, & z₂.
 Tail point coordinates subtracted from head point coordinates.

3. Normalize coordinate differences in terms of lattice parameters *a*, *b*, and *c*:

$$\frac{x_2 - x_1}{a} \quad \frac{y_2 - y_1}{b} \quad \frac{z_2 - z_1}{c}$$

4. Adjust to smallest integer values5. Enclose in square brackets, no commas

ex: pt. 1 $x_1 = 0, y_1 = 0, z_1 = 0$ pt. 2 $x_2 = a, y_2 = 0, z_2 = c/2$ $a - 0 \quad 0 - 0 \quad c/2 - 0$

$$\frac{a-0}{a} \quad \frac{0-0}{b} \quad \frac{c/2-0}{c}$$

=> 1, 0, 1/2 => 2, 0, 1

[uvw]

AMSE 205 Spring '2016

Crystallographic Directions

Crystallographic Directions

Multiplying by 2 to eliminate the fraction

-4, 1, 2 => [412] where the overbar represents a negative index

families of directions <uvv>

Determination of HCP Crystallographic Directions

Algorithm

1. Determine coordinates of vector tail, pt. 1:

 x_1 , y_1 , & z_1 ; and vector head, pt. 2: x_2 , y_2 , & z_2 . in terms of three axis (a_1 , a_2 , and z)

2. Tail point coordinates subtracted from head point coordinates and normalized by unit cell dimensions a and c

- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas, for three-axis coordinates [u'v'w']
- 5. Convert to four-axis Miller-Bravais lattice coordinates using equations below:

$$u = \frac{1}{3}(2u' - v') \quad v = \frac{1}{3}(2v' - u')$$
$$t = -(u + v) \qquad w = w'$$

6. Adjust to smallest integer values and enclose in brackets [*uvtw*] AMSE 205 Spring '2016

Chapter 3 - 10

Determination of HCP Crystallographic Directions

<u>Example</u>		a_1	a_2	Ζ
1.	Tail location	0	0	0
	Head location	a	a	0 <i>c</i>
2.	Normalized	1	1	0
3.	Reduction	1	1	0
4.	Brackets		[110]	

5. Convert to 4-axis parameters

$$u = \frac{1}{3} [(2)(1) - (1)] = \frac{1}{3} \qquad v = \frac{1}{3} [(2)(1) - (1)] = \frac{1}{3}$$
$$t = -(\frac{1}{3} + \frac{1}{3}) = -\frac{2}{3} \qquad w = 0$$

6. Reduction & Brackets

1/3, 1/3, -2/3, 0 => 1, 1, -2, 0 => [1120]

AMSE 205 Spring '2016

- Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.
- Algorithm
 - 1. Read off intercepts of plane with axes in terms of *a*, *b*, *c*
 - 2. Take reciprocals of intercepts
 - 3. Reduce to smallest integer values
 - Enclose in parentheses, no commas i.e., (*hkl*)

Family of Planes {*hkl*}

Ex: $\{100\} = (100), (010), (001), (\overline{1}00), (0\overline{1}0), (00\overline{1})$

Crystallographic Planes (HCP)

• In hexagonal unit cells the same idea is used

 a_3

1/∞ -1

-1

-1

-1

 a_2

0

0

 ∞

 a_1

1

1

1

1

С

1

1

1

1

- 1. Intercepts
- 2. Reciprocals
- 3. Reduction
- 4. Miller-Bravais Indices (1011)

Adapted from Fig. 3.8, *Callister & Rethwisch 9e.*

Single Crystalline vs. Polycrystalline

Photograph courtesy of Irocks.com, Megan Foreman photo. Fig_03_09

Fig_03_10

AMSE 205 Spring '2016

Single Crystalline vs. Polycrystalline

AMOL 203 Spring 2010

Summary

- Atoms may assemble into crystalline or amorphous structures.
- Crystallographic points, directions and planes are specified in terms of indexing schemes. Crystallographic directions and planes are related to atomic linear densities and planar densities.
- Materials can be single crystals or polycrystalline. Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.