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ISSUES TO ADDRESS...
•  What are the general structural and chemical 

characteristics of polymer molecules?
•  What are some of the common polymeric 

materials, and how do they differ chemically?

•  How is the crystalline state in polymers different 
from that in metals and ceramics ?

Chapter 5:
Structures of Polymers



Chapter 5 -AMSE 205 Spring ‘2016 2

What is a Polymer?

Poly mer
many repeat unit

Adapted from Fig. 5.2, Callister & Rethwisch 9e.
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Ancient Polymers
• Originally natural polymers were used

– Wood – Rubber
– Cotton – Wool
– Leather – Silk

• Oldest known uses
– Rubber balls used by Incas
– Noah used pitch (a natural polymer) 

for the ark
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Polymer Composition
Most polymers are hydrocarbons

– i.e., made up of  H and C
• Saturated hydrocarbons

– Each carbon singly bonded to four other atoms
– Example:

• Ethane, C2H6

C C

H

H H H
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Unsaturated Hydrocarbons
• Double & triple bonds somewhat unstable –

can form new bonds
– Double bond found in ethylene or ethene  - C2H4

– Triple bond found in acetylene or ethyne  - C2H2
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Isomerism
• Isomerism

– two compounds with same chemical formula can 
have quite different structures 

for example: C8H18
• normal-octane

• 2,4-dimethylhexane
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Polymerization and 
Polymer Chemistry

• Free radical polymerization

• Initiator: example - benzoyl  peroxide
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Chemistry and Structure of 
Polyethylene

Adapted from Fig. 
5.1, Callister & 
Rethwisch 9e.

Note:  polyethylene is a long-chain hydrocarbon
- paraffin wax for candles is short polyethylene
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Bulk or Commodity Polymers
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Bulk or Commodity Polymers (cont)
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Bulk or Commodity Polymers (cont)
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MOLECULAR WEIGHT
•  Molecular weight, M: Mass of a mole of chains.

Low M

high M

Not all chains in a polymer are of the same length
— i.e., there is a distribution of molecular weights 
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xi = number fraction of chains in size range i

MOLECULAR WEIGHT DISTRIBUTION
Fig. 5.4, Callister & Rethwisch 9e.

wi = weight fraction of chains in size range i

Mi = mean (middle) molecular weight of size range i
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Molecular Weight Calculation
Example: average mass of a class

# of 
Students

Weight
mass (lb)

1 104
1 116
2 140
1 143
4 180
5 182
2 191
2 220
1 225
1 380

What is the average
weight of the students in
this class:
a) Based on the number 

fraction of students in 
each mass range?

b) Based on the weight 
fraction of students in 
each mass range?
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Molecular Weight Calculation (cont.)

total 
number

= 20

total 
weight 

= 3,700 lb

Calculate the number fractions and 
weight fractions of students in each 
weight as follows:

For example: for the 180 lb students

2.0
20
4x180 

195.0
3700

081 x 4w180 
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Molecular Weight Calculation (cont.)
# of 
Students

Weight
mass (lb)

Number 
Fractions (xi)

Weight
Fractions (wi)

xi Mi wi Mi

1 104 1/20=0.05 (104x1)/3,700= 0.028 0.05x104=5.2 0.028x104=2.912

1 116 1/20=0.05 (116x1)/3,700=0.031 0.05x116=5.8 0.031x116=3.596

2 140 2/20=0.10 (140x2)/3,700=0.076 0.10x140=14.0 0.076x140=10.64

1 143 1/20=0.05 (143x1)/3,700=0.039 0.05x143=7.15 0.039x143=5.577

4 180 4/20=0.20 (180x4)/3,700=0.195 0.20x180=36.0 0.195x180=35.10

5 182 5/20=0.25 (182x5)/3,700=0.246 0.25x182=45.5 0.246x182=44.772

2 191 2/20=0.10 (191x2)/3,700=0.103 0.10x191=19.1 0.103x191=19.673

2 220 2/20=0.10 (220x2)/3,700=0.119 0.10x220=22.0 0.119x220=26.18

1 225 1/20=0.05 (225x1)/3,700=0.061 0.05x225=11.25 0.061x225=13.725

1 380 1/20=0.05 (380x1)/3,700=0.103 0.05x380=19.0 0.103x380=39.14

Total #
20

Total 
weight
3,700 lb = 185 lb = 201 lb

 iin MxM   iiw MwM
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Degree of Polymerization, DP
DP = average number of repeat units per chain
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Adapted from Fig. 5.7, Callister & Rethwisch 9e.

Molecular Structures for Polymers

Branched Cross-Linked NetworkLinear

secondary
bonding



Chapter 5 -AMSE 205 Spring ‘2016 20

Polymers – Molecular Shape
Conformation – chain bending and twisting are possible by 

rotation of carbon atoms around their chain bonds, conformation 
encompasses portions of a molecule which are not directly 
linked to the same atom 

note: not necessary to break chain bonds to alter molecular shape

Adapted from Fig. 
5.5, Callister & 
Rethwisch 9e.

Thermal energy at room temperature is sufficient to rotate some 
simple covalent bonds.
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Molecular Configurations for Polymers
Configurations – arrangements of units along the axis of the chain. 
Atom positions are not alterable except by breaking and re-forming primary
bonds. This costs a lot of energy!!

*R: atom or side group other than H (Cl, CH3 etc.) 

H    H    H    H

C    C    C    C

H    R H    R

H    H    H    H

C    C    C    C

H    R R    H

H    H

C    C

H    R
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Isomerism
Different atomic configurations are possible for polymers with the same 
composition 

Stereoisomerism: Atoms are linked together in the spatial arrangement 
in the same order but differ in their spatial arrangement. 

-R groups* are situated on the same side of the chain (isotactic
configuration)    

-R groups alternate sides of the chain (syndiotactic configuration)
-R groups randomly position (atactic configuration)

Geometrical Isomerism: Repeat units have a carbon double bond. A side 
group is bonded to each of the carbon atoms participating in the double 
bond, which may be situated on one side of the chain (cis) or its opposite 
(trans).
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Stereoisomerism
Tacticity – stereoregularity or spatial arrangement of 
R units along chain

isotactic – all R groups on 
same side of chain

syndiotactic – R groups 
alternate sides
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Tacticity (cont.)

atactic – R groups randomly
positioned

C C
H
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H
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Geometrical (cis/trans) Isomerism

cis
cis-isoprene (natural rubber) 

H atom and CH3 group on same 
side of chain

trans
trans-isoprene (gutta percha)

H atom and CH3 group on opposite 
sides of chain

C C
HCH3

CH2 CH2

C C
CH3

CH2

CH2

H
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Copolymers
two or more monomers 

polymerized together 
• random – A and B randomly 

positioned along chain
• alternating – A and B 

alternate in polymer chain
• block – large blocks of A 

units alternate with large 
blocks of B units

• graft – chains of B units 
grafted onto A backbone

A – B –

random

block

graft

Fig. 5.9, Callister & 
Rethwisch 9e.

alternating
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Polymer Crystals
• Crystalline regions 

– thin platelets with chain folds at faces
– Chain folded structure

Fig. 5.11, Callister & 
Rethwisch 9e.

≈ 10 nm
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Polymer Crystals (cont.)
Polymers rarely 100% crystalline
• Difficult for all regions of all chains to 

become aligned

•  Degree of crystallinity 
expressed as % crystallinity.
-- Some physical properties 

depend on % crystallinity.
-- Heat treating causes 

crystalline regions to grow 
and % crystallinity to 
increase.

Fig. 14.11, Callister 6e. (From H.W. Hayden, 
W.G. Moffatt, and J. Wulff, The Structure and Properties of 
Materials, Vol. III, Mechanical Behavior, John Wiley and 
Sons, Inc., 1965.)

crystalline 
region

amorphous
region
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Polymer Single Crystals
• Electron micrograph – multilayered single crystals 

(chain-folded layers) of polyethylene
• Single crystals – only for slow and carefully controlled 

growth rates

Fig. 5.10, Callister & 
Rethwisch 9e. 
[From A. Keller, R. H. Doremus, B. 
W. Roberts, and D. Turnbull (Eds.), 
Growth and Perfection of Crystals. 
General Electric Company and 
John Wiley & Sons, Inc., 1958, p. 
498. Reprinted with permission of 
John Wiley & Sons, Inc.]

1 μm
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Semicrystalline Polymers

Spherulite 
surface

Fig. 5.12, Callister & Rethwisch 9e.

• Some semicrystalline 
polymers form spherulite
structures

• Alternating chain-folded 
crystallites and amorphous 
regions

• Spherulite structure for 
relatively rapid growth rates


