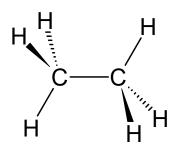

Chapter 5: Structures of Polymers

ISSUES TO ADDRESS...

- What are the general structural and chemical characteristics of polymer molecules?
- What are some of the common polymeric materials, and how do they differ chemically?
- How is the crystalline state in polymers different from that in metals and ceramics ?

What is a Polymer?

Adapted from Fig. 5.2, Callister & Rethwisch 9e.

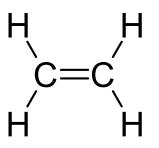

Ancient Polymers

- Originally natural polymers were used
 - Wood Rubber
 - Cotton Wool
 - Leather Silk
- Oldest known uses
 - Rubber balls used by Incas
 - Noah used pitch (a natural polymer) for the ark

Polymer Composition

Most polymers are hydrocarbons

- i.e., made up of H and C
- Saturated hydrocarbons
 - Each carbon singly bonded to four other atoms
 - Example:
 - Ethane, C_2H_6


Table 5.1

Compositions and Molecular Structures for Some Paraffin Compounds: C_nH_{2n+2}

Name	Composition	Structure	Boiling Point (°C)	
Methane	CH_4	$\mathbf{H} - \mathbf{H} \\ \mathbf{H} - \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} $	-164	
Ethane	C_2H_6	$\begin{array}{ccc} H & H \\ H & - H \\ H - C - C - H \\ H & H \\ H & H \end{array}$	-88.6	
Propane	C_3H_8	$\begin{array}{cccc} H & H & H \\ & & \\ H - C - C - C - C - H \\ & & \\ H & H & H \end{array}$	-42.1	
Butane	C_4H_{10}		-0.5	
Pentane	$C_{5}H_{12}$		36.1	
Hexane	C_6H_{14}		69.0	

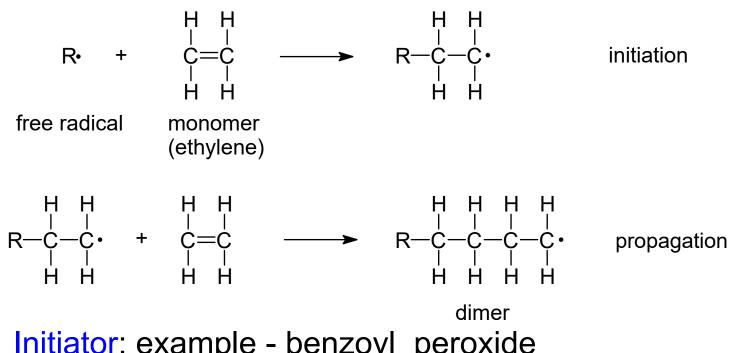
Unsaturated Hydrocarbons

- Double & triple bonds somewhat unstable can form new bonds
 - Double bond found in ethylene or ethene C_2H_4

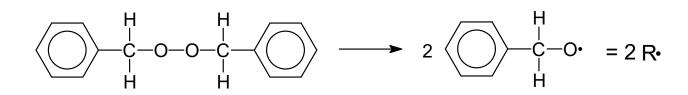
- Triple bond found in acetylene or ethyne - C_2H_2

Isomerism

- Isomerism
 - two compounds with same chemical formula can have quite different structures

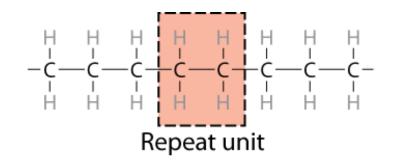

for example: C₈H₁₈

• normal-octane

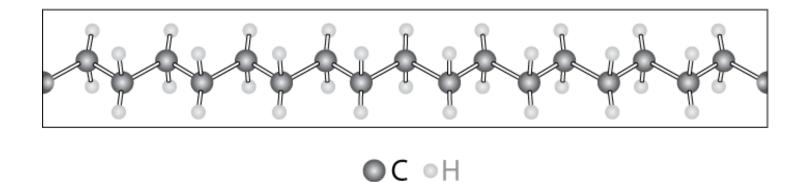

• 2,4-dimethylhexane

Polymerization and Polymer Chemistry

Free radical polymerization



Initiator: example - benzoyl peroxide



AMSE 205 Spring '2016

Chemistry and Structure of Polyethylene

Adapted from Fig. 5.1, *Callister* & *Rethwisch 9e.*

Note: polyethylene is a long-chain hydrocarbon

- paraffin wax for candles is short polyethylene

Bulk or Commodity Polymers

Polymer	Repeat Unit	
Polyethylene (PE)	$\begin{array}{ccc} H & H \\ - \begin{matrix} I \\ C \\ - \begin{matrix} C \\ - \end{matrix} \\ - \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ H & H \end{array}$	
Poly(vinyl chloride) (PVC)	$\begin{array}{ccc} H & H \\ - \begin{matrix} I \\ C \\ - \begin{matrix} C \\ - \end{matrix} \\ - \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ H & \begin{matrix} C \\ - \end{matrix} \\ H & \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \end{matrix} \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \begin{matrix} C \\ - \end{matrix} \\ - \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \right. \\ \left. \end{matrix} \\ \left. \end{matrix} \right. \\ \left. $	
Polytetrafluoroethylene (PTFE)	$ \begin{array}{ccc} \mathbf{F} & \mathbf{F} \\ -\mathbf{C} & \mathbf{C} \\ -\mathbf{C} & \mathbf{C} \\ \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} \end{array} $	
Polypropylene (PP)	$\begin{array}{ccc} H & H \\ - \begin{matrix} I & I \\ - C - C - \\ - \\ H & C \\ H & C \\ H_3 \end{array}$	
Polystyrene (PS)	$ \begin{array}{c} H \\ H \\ -C \\ -C \\ H \\ H \\ \end{array} $	

 Table 5.3
 Repeat Units for Ten of the More Common Polymeric Materials

Bulk or Commodity Polymers (cont)

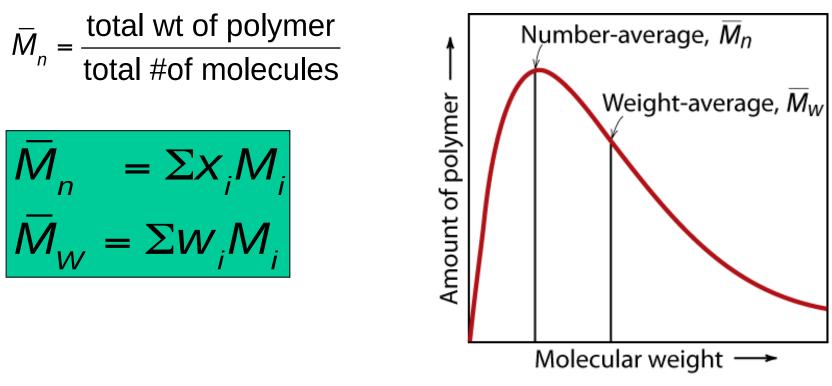
Polymer	Repeat Unit
Poly(methyl methacrylate) (PMMA)	$ \begin{array}{ccc} H & CH_{3} \\ & \\ -C - C - \\ & \\ H & C = 0 \\ \\ O \\ \\ CH_{3} \end{array} $
Phenol-formaldehyde (Bakelite)	CH ₂ CH ₂ CH ₂ CH ₂

Bulk or Commodity Polymers (cont)

Polymer	Repeat Unit	
Poly(hexamethylene adipamide) (nylon 6,6)	$-\mathbf{N} - \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \\ -\mathbf{C} - \\ \mathbf{H} \end{bmatrix}_{6} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \end{bmatrix}_{6} \begin{bmatrix} \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \end{bmatrix}_{4}$	
Poly(ethylene terephthalate) (PET, a polyester)	$ \begin{array}{c} \mathbf{O} & a & \mathbf{O} & \mathbf{H} & \mathbf{H} \\ \mathbf{-C} & \mathbf{-C} & \mathbf{-C} & \mathbf{-C} & \mathbf{-C} & \mathbf{-O} \\ \mathbf{-C} & \mathbf{-C} & \mathbf{-C} & \mathbf{-O} & \mathbf{-C} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \end{array} $	
Polycarbonate (PC)	$- \underbrace{\mathbf{O}}_{\mathrm{CH}_{3}}^{a} \underbrace{\mathbf{CH}_{3}}_{\mathrm{CH}_{3}} \underbrace{\mathbf{O}}_{\mathrm{O}}_{\mathrm{CH}_{3}}^{\mathbf{O}} \underbrace{\mathbf{O}}_{\mathrm{CH}_{3}}^{\mathbf{O}} \underbrace{\mathbf{O}}_{\mathrm{CH}_$	

MOLECULAR WEIGHT

• Molecular weight, *M*: Mass of a mole of chains.


Low M

high M

Not all chains in a polymer are of the same length — i.e., there is a distribution of molecular weights

MOLECULAR WEIGHT DISTRIBUTION

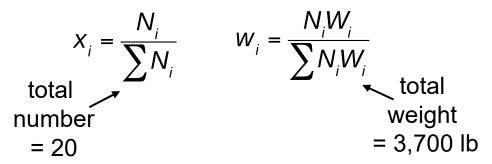
Fig. 5.4, Callister & Rethwisch 9e.

 M_i = mean (middle) molecular weight of size range *i*

- x_i = number fraction of chains in size range *i*
- *w_i* = weight fraction of chains in size range *i*

Molecular Weight Calculation

Example: average mass of a class


# of	Weight	
Students	mass (lb)	
1	104	
1	116	
2	140	
1	143	
4	180	
5	182	
2	191	
2	220	
1	225	
1	380	

What is the average weight of the students in this class:

- a) Based on the number fraction of students in each mass range?
- b) Based on the weight fraction of students in each mass range?

Molecular Weight Calculation (cont.)

Calculate the number fractions and weight fractions of students in each weight as follows:

For example: for the 180 lb students

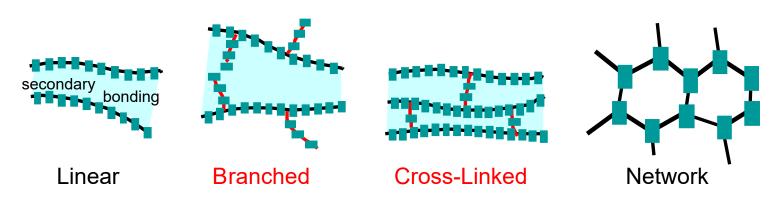
$$x_{180} = \frac{4}{20} = 0.2$$
$$w_{180} = \frac{4 \times 180}{3700} = 0.195$$

Molecular Weight Calculation (cont.)

# of Students	Weight mass (lb)	Number Fractions (<i>x_i</i>)	Weight Fractions (<i>w_i</i>)	$x_i M_i$	w _i M _i
1	104	1/20=0.05	(104x1)/3,700= 0.028	0.05x104=5.2	0.028x104=2.912
1	116	1/20=0.05	(116x1)/3,700=0.031	0.05x116=5.8	0.031x116=3.596
2	140	2/20=0.10	(140x2)/3,700=0.076	0.10x140=14.0	0.076x140=10.64
1	143	1/20=0.05	(143x1)/3,700=0.039	0.05x143=7.15	0.039x143=5.577
4	180	4/20=0.20	(180x4)/3,700=0.195	0.20x180=36.0	0.195x180=35.10
5	182	5/20=0.25	(182x5)/3,700=0.246	0.25x182=45.5	0.246x182=44.772
2	191	2/20=0.10	(191x2)/3,700=0.103	0.10x191=19.1	0.103x191=19.673
2	220	2/20=0.10	(220x2)/3,700=0.119	0.10x220=22.0	0.119x220=26.18
1	225	1/20=0.05	(225x1)/3,700=0.061	0.05x225=11.25	0.061x225=13.725
1	380	1/20=0.05	(380x1)/3,700=0.103	0.05x380=19.0	0.103x380=39.14
Total # 20	Total weight 3,700 lb			$\overline{M}_n = \sum x_i M_i$ $= 185 \text{ lb}$	$\overline{M}_{w} = \sum w_{i}M_{i}$ $= 201 \text{ lb}$

$$\overline{M}_n = \sum x_i M_i = 185 \, lb$$

$$\overline{M}_{w} = \sum w_{i}M_{i} = 201 \, lb$$


Degree of Polymerization, **DP**

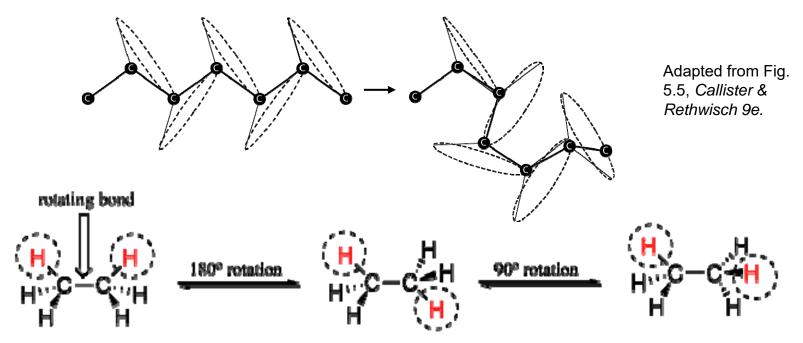
DP = average number of repeat units per chain

where \overline{m} = average molecular weight of repeat unit for copolymers this is calculated as follows:

$$\overline{m} = \Sigma f_i m_i$$

Chain fraction — mol. wt of repeat unit *i*

Molecular Structures for Polymers

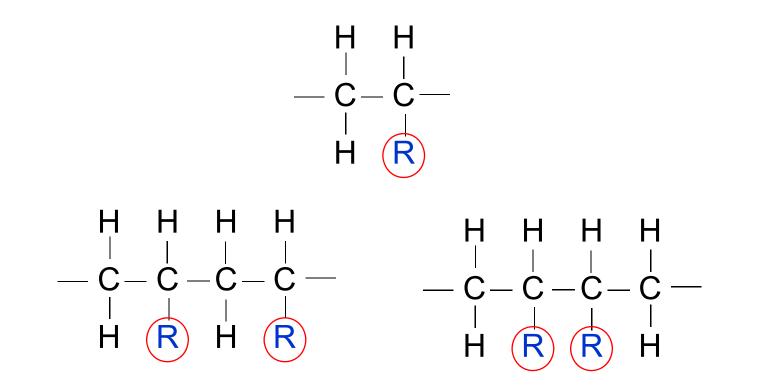


Adapted from Fig. 5.7, Callister & Rethwisch 9e.

Polymers – Molecular Shape

Conformation – chain bending and twisting are possible by rotation of carbon atoms around their chain bonds, conformation encompasses portions of a molecule which are not directly linked to the same atom

note: not necessary to break chain bonds to alter molecular shape



Thermal energy at room temperature is sufficient to rotate some simple covalent bonds.

AMSE 205 Spring '2016

Molecular Configurations for Polymers

Configurations – arrangements of units along the axis of the chain. Atom positions are not alterable except by breaking and re-forming primary bonds. *This costs a lot of energy!!*

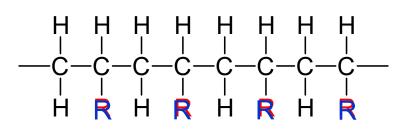
*R: atom or side group other than H (CI, CH_3 etc.)

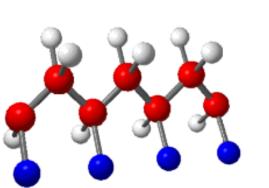
Isomerism

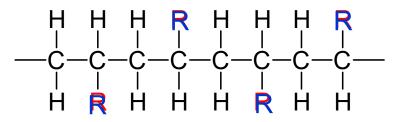
Different atomic configurations are possible for polymers with the same composition

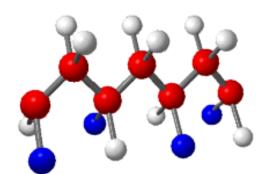
Stereoisomerism: Atoms are linked together in the spatial arrangement in the same order but differ in their spatial arrangement.

- -R groups* are situated on the same side of the chain (isotactic configuration)
- -R groups alternate sides of the chain (syndiotactic configuration)
- -R groups randomly position (atactic configuration)

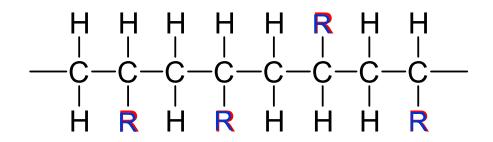

Geometrical Isomerism: Repeat units have a carbon double bond. A side group is bonded to each of the carbon atoms participating in the double bond, which may be situated on one side of the chain (cis) or its opposite (trans).

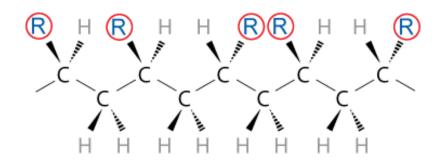

Stereoisomerism

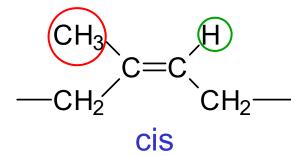

Tacticity – stereoregularity or spatial arrangement of R units along chain


isotactic – all R groups on same side of chain

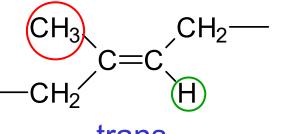
syndiotactic – R groups alternate sides





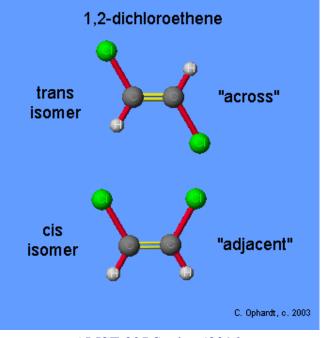

Tacticity (cont.)

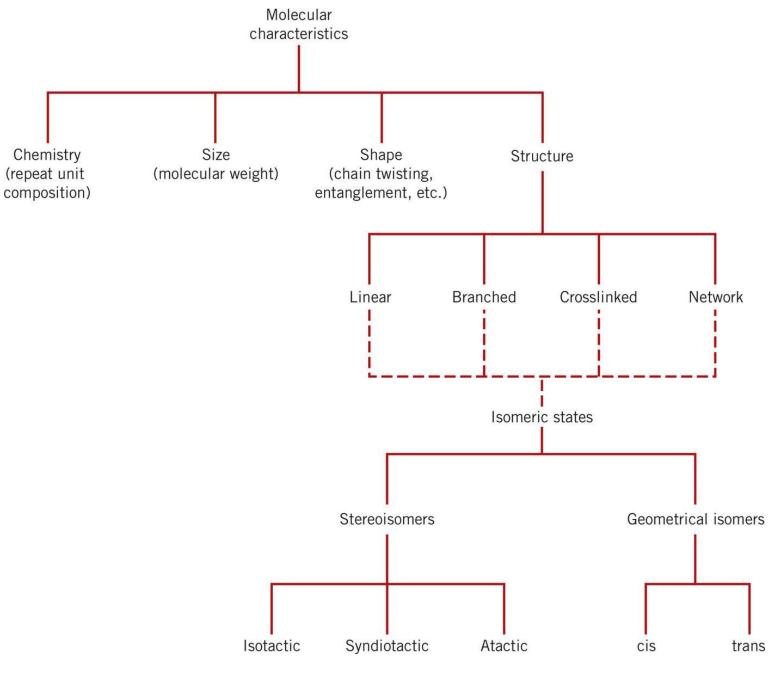
atactic – R groups randomly positioned



Geometrical (cis/trans) Isomerism

cis-isoprene (natural rubber)

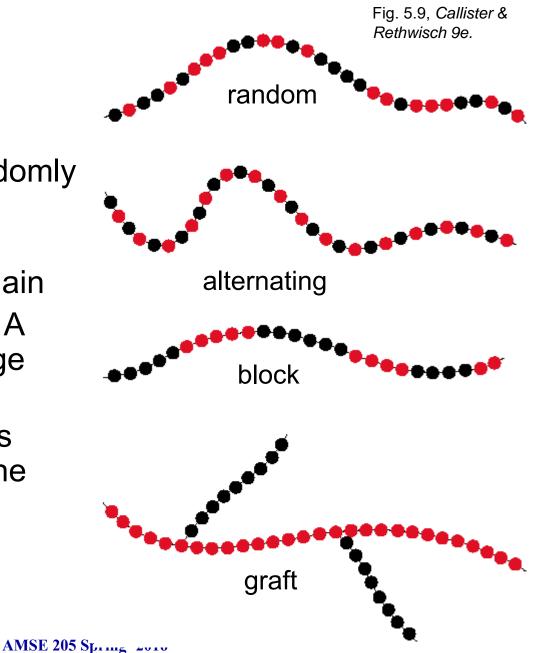

H atom and CH₃ group on same side of chain


trans

trans-isoprene (gutta percha)

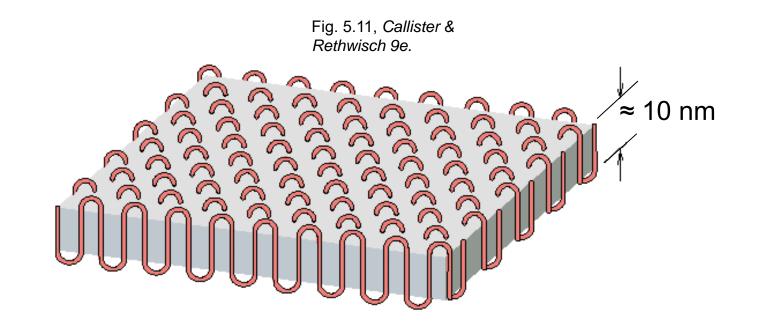
H atom and CH₃ group on opposite sides of chain

AMSE 205 Spring '2016



AMSE 205 Spring '2016

Copolymers

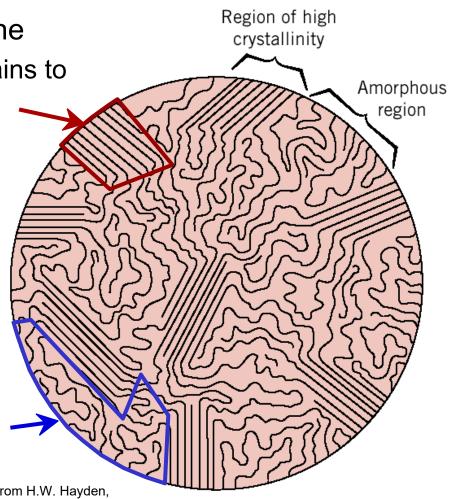

- two or more monomers polymerized together
- random A and B randomly positioned along chain
- alternating A and B alternate in polymer chain
- block large blocks of A units alternate with large blocks of B units
- graft chains of B units grafted onto A backbone

Polymer Crystals

- Crystalline regions
 - thin platelets with chain folds at faces
 - Chain folded structure

Polymer Crystals (cont.)

Polymers rarely 100% crystalline


 Difficult for all regions of all chains to become aligned crystalline

region

- Degree of crystallinity expressed as % crystallinity.
 - -- Some physical properties depend on % crystallinity.
 - -- Heat treating causes crystalline regions to grow and % crystallinity to increase.

amorphous region

Fig. 14.11, *Callister 6e.* (From H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

Polymer Single Crystals

- Electron micrograph multilayered single crystals (chain-folded layers) of polyethylene
- Single crystals only for slow and carefully controlled growth rates

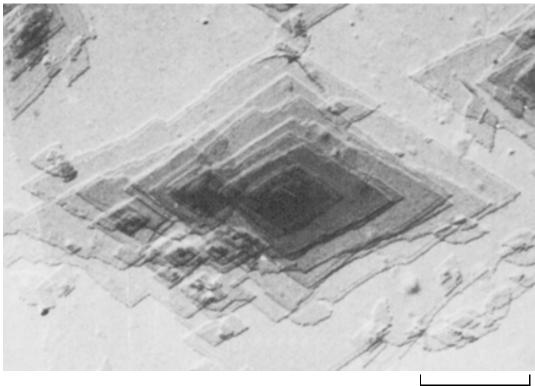
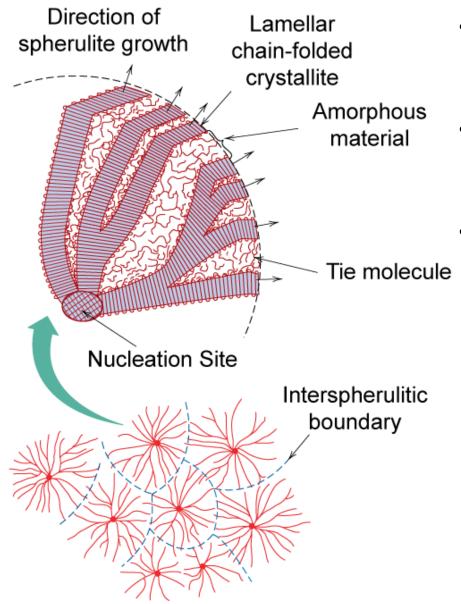
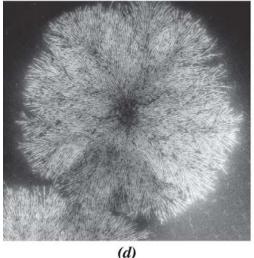



Fig. 5.10, *Callister & Rethwisch 9e.* [From A. Keller, R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.), Growth and Perfection of Crystals. General Electric Company and John Wiley & Sons, Inc., 1958, p. 498. Reprinted with permission of John Wiley & Sons, Inc.]


AMSE 205 Spring '2016

1 µm

Semicrystalline Polymers

- Some semicrystalline polymers form spherulite structures
- Alternating chain-folded crystallites and amorphous regions
- Spherulite structure for relatively rapid growth rates

Photograph of Figure (d) supplied by P. J. Phillips. First published in R. Bartnikas and R. M. Eichhorn, Engineering Dielectrics, Vol. IIA, Electrical Properties of Solid Insulating Materials: Molecular Structure and Electrical Behavior, 1983. Copyright ASTM, 1916 Race Street, Philadelphia, PA 19103. **r** 5 -Reprinted with permission.

31

AMSE 205 Spring '2016