Chapter 11. Phase Transformations (상변태)

Material properties depend on microstructures produced as a result of phase transformations.

- * Classifications of phase transformations
 - Simple diffusion-dependent transformation

 (no change in the number or composition)
 ex) solidification of a pure metal & recrystallization

 Diffusion-dependent transformation

 (change in the number or composition)
 - ex) eutectoid reaction
 - 3) Diffusionless transformation (metastable phase)
 ex) martensitic transformation in steel alloys

Transformation Rate vs. Temperature (온도에 따른 변태 속도)

Fig. 11.8 온도에 따른 핵생성 속도, 성장 속도 및 총괄 변태 속도.

Transformation Rate vs. Time (온도에 따른 변태 시간)

Fig. 11.9 (a) 온도에 따른 변태 속도, (b) 온도에 따른 변태 시간 그래프 개형.

Avrami equation ~시간(*t*)에 따른 변태 분율(*y*): *y* =1-exp(-*ktⁿ*) *k*, *n*: 시간에 무관한 상수

Fig. 11.10 등온 조건에서 시간의 로그값에 대한 변태 분율.

Fig. 11.11 Cu에 대한 시간의 로그값에 대한 재결정 백분율.

Microstructural & Property Changes in Fe-C Alloys (철-탄소 합금계에서 미세구조 및 성질의 변화)

Isothermal Transformation Diagrams (등온 변태도)

Pearlite (펄라이트)

Eutectoid reaction for Fe-Fe₃C system:

Iron-Iron Carbide (Fe-Fe₃C) Phase Diagram

Fig. 11.12 공석 조성에서 austenite → pearlite 변태에 대한 시간에 대한 변태 백분율.

Fig. 11.13 시간에 대한 변태 백분율(위)로부터 등온변태도(아래)의 작성 예.

Isothermal transformation diagram (등온변태도) or T-T-T plot or Time-temperature-transformation plot (시간-온도-변태 곡선)

Fig. 11.14 공석 Fe-C 합금의 등온변태도와 열처리에 따른 미세구조.

Fig. 11.15 (a) coarse pearlite (조대 펄라이트), (b) fine pearlite (미세 펄라이트) 현미경 사진.

Bainite (베이나이트) : Elongated Fe₃C particles in α-ferrite matrix Diffusion controlled (확산변태) N(nose) 이하의 온도에서 형성

Spheroidite (스페로이다이트)

Pearlite or bainite 강을 eutectoid 온도 이하에서 장시간 heat treatment할 경우 생성 (예, 700 °C에서 18-24 h 열처리)

Fe₃C 상이 입자 상으로 변환

Driving force – reduction of α -ferrite/Fe₃C interfacial area

(ferrite) Fe₃C (cementite)

 Fig. 11.19 Spheroidite 미세

 구조 현미경 사진.

Martensite (마텐자이트)

Austenite 합금을 상온 근처로 quenching할 경우 생성

Diffusionless transformation (무확산 변태)로 생긴 단일 상

FCC 구조의 austenite가 급랭될 때 Fe와 C의 원자가 재배열되어 BCT 구조로 순간적으로 바뀌어 생성 (시간에 무관)

Fig. 11.21 Martensite의 unit cell (BCT: body-centered tetragonal).

Chapter 11. Phase Transformations

Fig. 11.22 Martensite 미세구조 현미경 사진.

Fig. 11.23 공석조성 Fe-C 합금의 등온변태도.

Continuous cooling transformation diagram (연속냉각변태도)

 \rightarrow Curves are shifted to longer times and lower temperatures.

다. 다는 UNIVERSITY OF SUMON

Mechanical Behavior of Fe-C Alloys (철-탄소 합금계의 기계적 성질)

Pearlite

Cementite: harder but more brittle than ferrite Fine pearlite: harder and stronger than coarse pearlite

Spheroidite

Softest and weakest in steel alloys Extremely ductile, much more than either fine or coarse pearlite

Chapter 11. Phase Transformations

Fig. 11.30 순탄소강의 탄소 농도에 따른 기계적 성질.

Fig. 11.31 순탄소강의 미세구조에 따른 기계적 성질: (a) 경도, (b) 연성.

Bainite

Fine structure, stronger and harder than pearlite

Desirable combination of strength and ductility

Fig. 11.32 공석조성의 Fe-C 합금에서 등온 변태온도에 따른 경도 및 인장강도.

Martensite

Hardest and strongest in steel alloys,but most brittle ← interstitial C atom이 dislocation motion을 막아주며 BCT 구조는 slip system이 적기 때문 0.5 wt% C 이상에서 급랭한 경우 internal stress 심각하여 crack 발생

Tempered martensite (템퍼링된 마텐자이트)

Tempering: 잔류응력 제거 및 연성 증가 위해 열처리 하는 것 단단하지만 취성인 martensite의 연성과 인성 증가 목적 보통 250~300 °C에서 열처리 후 200 °C에서 응력 제거

Martensite (BCT, 1 phase) \rightarrow tempered martensite (α + Fe₃C phases)

Fig. 11.33 Martensite, tempered martensite 및 pearlite의 탄소 농도에 따른 경도.

Fig. 11.34 Tempered martensite 의 현미경 사진.

Table 11.2	Summar	y of Microstructures and	Mechanical Pro	operties for Iron-	-Carbon Alloys
------------	--------	--------------------------	----------------	--------------------	----------------

Microconstituent	Phases Present	Arrangement of Phases	Mechanical Properties (Relative)
Spheroidite	α Ferrite + Fe ₃ C	Relatively small Fe ₃ C sphere-like particles in an α-ferrite matrix	Soft and ductile
Coarse pearlite	α Ferrite + Fe ₃ C	Alternating layers of α ferrite and Fe ₃ C that are relatively thick	Harder and stronger than spheroidite, but not as ductile as spheroidite
Fine pearlite	α Ferrite + Fe ₃ C	Alternating layers of α ferrite and Fe ₃ C that are relatively thin	Harder and stronger than coarse pearlite, but not as ductile as coarse pearlite
Bainite	α Ferrite + Fe ₃ C	Very fine and elongated particles of Fe ₃ C in an α-ferrite matrix	Hardness and strength greater than fine pearlite; hardness less than martensite; ductility greater than martensite
Tempered martensite	α Ferrite + Fe ₃ C	Very small Fe ₃ C sphere-like particles in an α -ferrite matrix	Strong; not as hard as martensite, but much more ductile than martensite
Martensite	Body-centered tetragonal, single phase	Needle-shaped grains	Very hard and very brittle

General Trends of Mechanical Properties

Strength

martensite tempered martensite

bainite

fine pearlite

coarse pearlite

spheroidite

Ductility

Crystallization, Melting & Glass Transition Phenomena in Polymers (고분자재료에서의 결정화, 용융 및 유리전이 현상)

Crystallization

Avrami equation:

 $y = 1 - \exp(-kt^n)$

Transformation rate: rate = $\frac{1}{t_{0.5}}$

Fig. 11.46 Polypropylene의 시간에 따른 등온 결정화 분율.

Melting & Glass Transition Temperatures (용융 온도 및 유리전이 온도)

Melting Temperature, *T_m* ~ 결정성 고체 고분자가 점성 액 체로 바뀌는 온도

Glass Transition Temperature, *T_g* ~ 비정질 또는 반결정성 유리상 고분자가 고무상 고분자로 바뀌 는 온도

Fig. 11.47 비결정질(A), 반결정질 (B), 결정질(C) 고분자의 온도 에 따른 비체적 거동.

Table 11.3	Melting and Glass Transition Temperatures for Some of the More			
	Common Polymeric Materials			

M	Glass Transition Temperature	Melting Temperature
Material	[°C (°F)]	$[\mathcal{C}(\mathcal{F})]$
Polyethylene (low density)	-110 (-165)	115 (240)
Polytetrafluoroethylene	-97 (-140)	327 (620)
Polyethylene (high density)	-90 (-130)	137 (279)
Polypropylene	-18(0)	175 (347)
Nylon 6,6	57 (135)	265 (510)
Poly(ethylene terephthalate) (PET)	69 (155)	265 (510)
Poly(vinyl chloride)	87 (190)	212 (415)
Polystyrene	100 (212)	240 (465)
Polycarbonate	150 (300)	265 (510)

Factors Affecting $T_m \& T_g (T_m 및 T_g)$ 에 영향을 미치는 요소)

Both $T_m \& T_a$ increase with increasing chain stiffness.

Chain stiffness increases by the presence of Bulky side groups (ex., PP vs. PS) Polar groups (ex., PP vs. PVC) Double bonds & aromatic groups in the backbone

 T_g lies somewhere between 0.5 and 0.8 T_m (in Kelvin).

(Probs.)

11.7, 11.9, 11.15, 11.18, 11.30, 11.32 & 11.44.

