
- 1) 디스플레이의 발전 추이
 - ① 디스플레이 기술의 발전 현황

- 1) 디스플레이의 발전 추이
 - ② 플렉시블 디스플레이 기술의 발전

2) 플렉서블 디스플레이

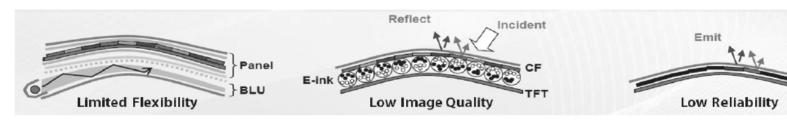
① 플렉서블 디스플레이 (Flexible Display)

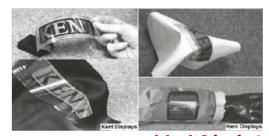
a) 플렉서블 디스플레이의 정의

- 평면 디스플레이(Flat Panel Display)와 달리 접거나 휠 수 있는 형태를 변형시킬 수 있는 차세대 디스플레이

b) 플렉서블 디스플레이의 특징

- 형태의 변형을 통한 공간 활용성 향상과 얇고 가벼우며 깨지지 않음
- 스마트폰 비롯한 웨어러블 스마트 기기, 자동차용 디스플레이 및 디지털 사이니지(Digital Signage) 등의 분야에 적용 가능
- 디스플레이 시장의 다변화 및 사물인터넷 기기 등과 연계 가능

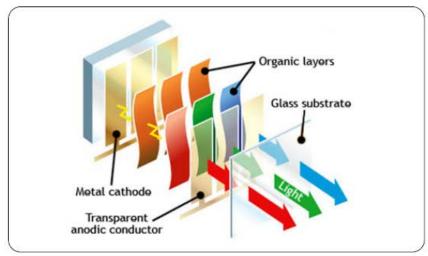

Flexible Display Panel

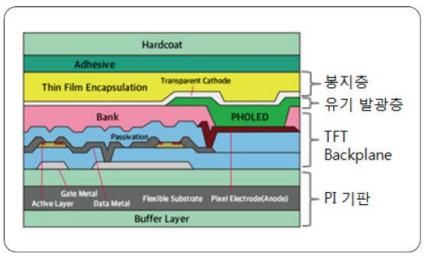

1) 플렉시블 디스플레이 모드

① 구동방식에 따른 플렉서블 디스플레이 유형

	장 점	단 점
플렉서블	• 완전한 플렉서블 디스플레이 구현	• 수분이나 산소에 민감
OLED	• 보조광원 불필요	• 구동방식이 복잡
플렉서블	• 구동방식 및 제조방식이 간단	완전한 플렉서블 디스플레이 구현이
LCD	• 수분이나 산소에 민감하지 않음	어려움 보조 광원의 개발 필요
플렉서블 E-Paper	완전한 플렉서블 디스플레이 구현수분이나 산소에 민감하지 않음소비전력이 작아 모바일에 유리	• 컬러 및 색재현율 구현이 어려움 • 느린 응답속도로 동영상 구현이 어려움

Flexible LCD Flexible EPD Flexible OLED

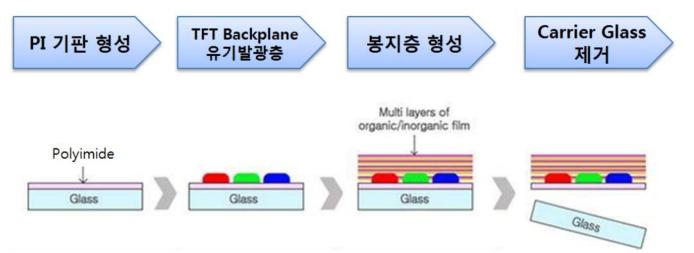

Flexible Display Panel


1) 플렉시블 디스플레이 모드

② 플렉서블 디스플레이의 구성요소 및 역할

구 분	세 부 내 용		
PI 기판	• 기존의 유리기판을 대신하는 기판 • 플라스틱의 일종으로 유연하고, 고온에서 변형이 일어나지 않음		
TFT Backplane	• 디스플레이의 각 화소를 구동시키는 TFT 소자와 이를 구성하는 여러 층을 총칭 • a-Si, LTPS, Oxide TFT 등의 기술이 존재		
유기 발광층 - 유기물로 구성되며, 전류가 가해지면 빛을 발생 - 전자, 정공을 수송하는 공동층과 빛을 내는 발광층으로 구성			
봉지층	• 플렉서블 디스플레이 공정의 마지막에 형성되어, 유기 발광층, TFT Backplane 등을 보호하고 수분이 침투되는 것을 막음		

- OLED 구동방식 플렉서블 디스플레이의 구조



Flexible Display Panel

2) 플렉시블 디스플레이의 생산

- ① 플렉서블 디스플레이 생산공정
 - a) 플렉서블 디스플레이 생산공정 순서
 - PI 기판 → TFT Backplane → 유기 발광층 및 봉지층 형성 → Carrier Glass (PI 기판 고정 유리기판) 제거
 - b) 필요 생산기술
 - PI 기판, 봉지층 형성시 평면 OLED 디스플레이와 차별화 생산기술 필요
 - TFT Backplane 및 유기 발광층 형성시 공정조건의 차이 있음 → 평면 OLED 디스플레이와 유사 공정으로 진행
 - 유연성을 보유하면서 고온 공정수행 가능한 기판 소재 확보 중요

2) 플렉시블 디스플레이용 플라스틱 기판

① 디스플레이의 유리기판과 플라스틱기판의 특징 비교

	Glass	Plastic
Adhesion(TEC)	W(Weak)	S(Strong)
Cost	W	S
Flexibility	W	S
Permeation (moisture, oxygen)	S	W
Physical strength	S	P(Possible)
Process temperature	S	W
Thermal durability	S	W
Transparency	S	M
Weight (for large size)	W	S

2) 플렉시블 디스플레이용 플라스틱 기판

② 플렉서블 디스플레이의 플라스틱기판의 요구성능

특성	요구성능		
Optical Transmittance	90% or Better		
Retardation	Dependent on Display Mode		
Dimensional Stability	CTE < 10 ppm°C		
Thermal Stability	> 250°C		
Roughness	< 2 nm rms		
Hardness	> 6 H		
Mechanical Durability	Flex, Scratch Resistant		
Chemical Resistance	Organics, Acid and Base		
Thickness Uniformity	10 µm or 5 %		
Oxygen Permeability	10 ⁻⁵ cc/m ² · day · atm		
Water Vapor	10 ⁻² g/m ² · day (LCD, EPD)		
Transmittance Rate	10 ⁻⁵ ~10 ⁻⁶ g/m ² · day (OLED)		

2) 플렉시블 디스플레이용 플라스틱 기판

③ 플라스틱 기판의 특성

a) 플라스틱 기판의 요구조건

- 300℃ 이상에서도 유리 전이 현상이 발생하지 않는 PI 소재 사용
- 액체 PI 를 Carrier Glass 위에 도포 및 경화시켜 형성 → 기판 위 TFT Backplane, 유기 발광층 등 형성 제품 제작 → Laser Lift Off로 Carrier Glass로부터 분리
- PI 소재는 쉽게 휘어지고 열 수축·팽창이 유리기판 보다 큼 → 기판을 Carrier Glass에 고정시켜 공정 수행

	PEN	PET	PES	PI	Glass
명 칭	Polyethylene naphthalate	Polyethylene terephthalate	Polyether sulfone	Polyimide	Glass
유리전이 온도(℃)	120	78	223	340	620
열팽창계수 (ppm/℃)	13	15	54	50	5
투과율(%)	87	91	88	30	90
비고	-	-	-	투과율 90% 이상으로 개선	-

3) 플렉시블 디스플레이 패키징 공정

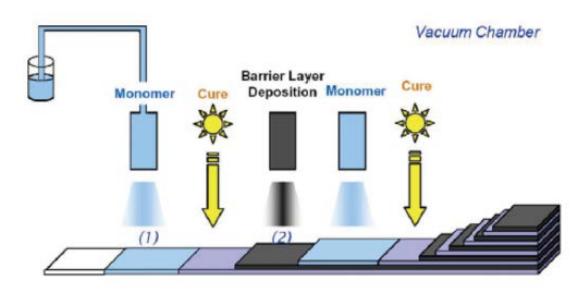
① 봉지층 형성

- a) 봉지층 형성 필요성
- OLED 구동방식의 유기 발광층은 수분에 취약해 수분 침투 방지용 봉지층 형성 필요
- 플렉서블 디스플레이에는 유연성을 확보하면서 수분 침투방지 성능을 향상시킨 TFE(Thin Film Encapsulation) 기술 사용

b) 평면 및 플렉서블 디스플레이의 봉지공정 비교

	Glass Frit Sealing (평면 OLED 디스플레이)	TFE(Thin Film Encapsulation) (플렉서블 OLED 디스플레이)	
형 태	Glass cover Frit Glass substrate	Organic Layer Organic Layer Inorganic Layer Organic Layer Inorganic Layer OLED Layer Substrate	
특 징	 유리 재질의 Frit을 사용 수분 침투방지에는 가장 효과적 깨질 수 있어 플렉서블에는 적용 불가 	유, 무기물을 교대로 여러층 적층유연성을 높이면서, 수분 침투방지 성능을 향상시킬 수 있음	

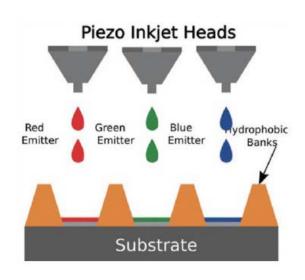
3) 플렉시블 디스플레이 패키징 공정


② TFE 형성

a) TFE 기술

- 유연한 유기물층과 투습방지 성능이 뛰어난 무기물층을 교대로 적층시켜, 유연하면서도 수분침투 방지에 효과적인 봉지층 형성

b) TFE 반복적층 공정


- 유기물 도포 → 경화 → 무기물 증착(Sputtering) → 다층 배리어막 형성
- 각 층의 두께 및 적층수 줄이는 기술 중요

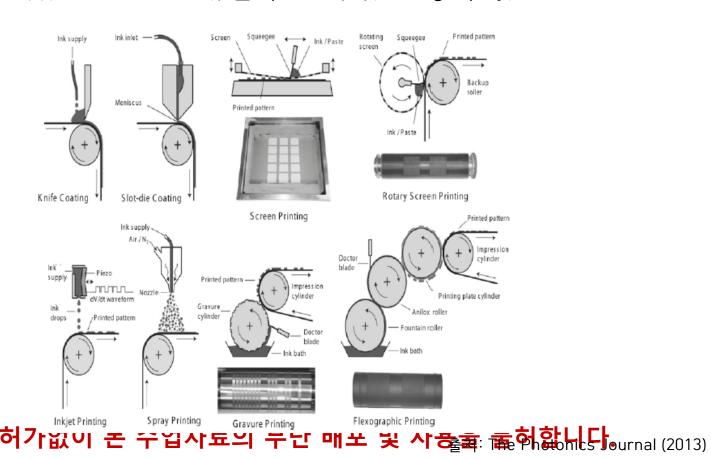
1) 인쇄 공정

① 인쇄전자(printed electronics)

- 인쇄 기법(printing)을 마이크로 전자기술 (micro-electronics)과 융합해 플라스틱 기반의 다양한 전자소자 및 부품, 모듈 제작
- 플렉시블 디스플레이는 고온, 진공 기반 증착 공정 사용이 어려우므로 인쇄 전자공정 필요

② 인쇄전자공정의 특징

a) 기존 공정과의 차이점

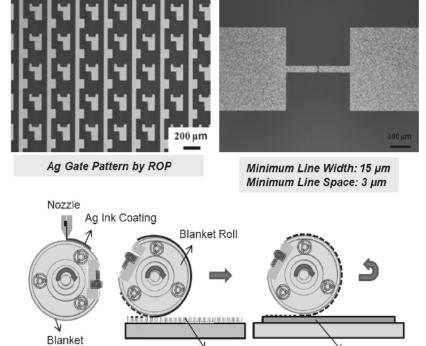

- 기존 디스플레이 공정과 달리 대규모 설비 투자 및 유해 화학물질 배출 적음
- 기존 실리콘 기반 배치(batch) 형태 제조 공정을 플라스틱 필름 기반 유연 재료 활용해 회전롤에 감아 연속인쇄 (R2R 연속공정)

b) R2R 공정 기반 인쇄전자공정

- 필요 재료만 기판 위에 추가하는 직접 인쇄(direct printing) 통해 기존 복잡한 디스플레이 공정 단계 및 제조 단가의 저감 가능
- 마이크로 전자공학 기술만큼의 신뢰도와 정밀도 못미침
- 저렴한 생산 비용 통해 향후 기존 디스플레이 소재 및 공정의 급속 대체 가능 허가없이 본 수업자료의 무단 배포 및 사용율: 崖허핥니다. ournal (2013) 13

2) 인쇄전자 공정

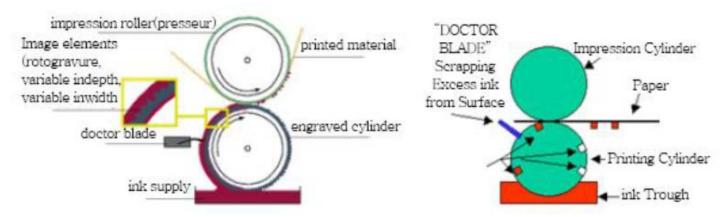
- ③ 디스플레이 등 인쇄전자 소자 제작용 인쇄방법
 - a) 인쇄전자에 적용 가능한 인쇄공정 기술 잉크젯 (inkjet), 스프레이(spray), 스크린(screen), 그라비아 (gravure), 리버스 오프셋(reverse offset), 플렉소그래피(flexography)


2) 인쇄전자 공정

- ③ 디스플레이 등 인쇄전자 소자 제작용 인쇄방법
 - b) 인쇄전자공정 기술

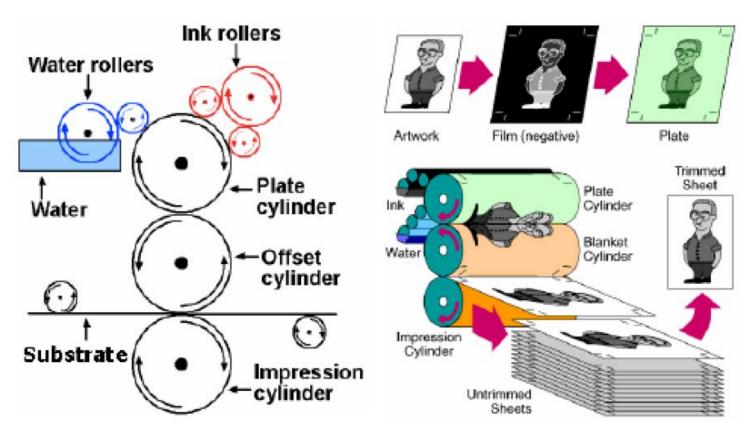
Printing method	Viscosity (Pas)	Layer thickness (µ m)	Feature size (µm)	Registration (µm)	Throughput (m²/s)
Gravure	0.01~0.2	<0.1~8	75	>20	3~60
Flexography	0.05~0.5	0.04~2.5	80	>200	3~30
Offset	5~100	0.5~2	10~50	>10	3~30
Screen	0.5~50	0.015~100	20~100	>25	2~3
Ink-jet	0.001~0.04	0.05~20	20~50	5~20	0.01~0.5

2) 인쇄전자 공정

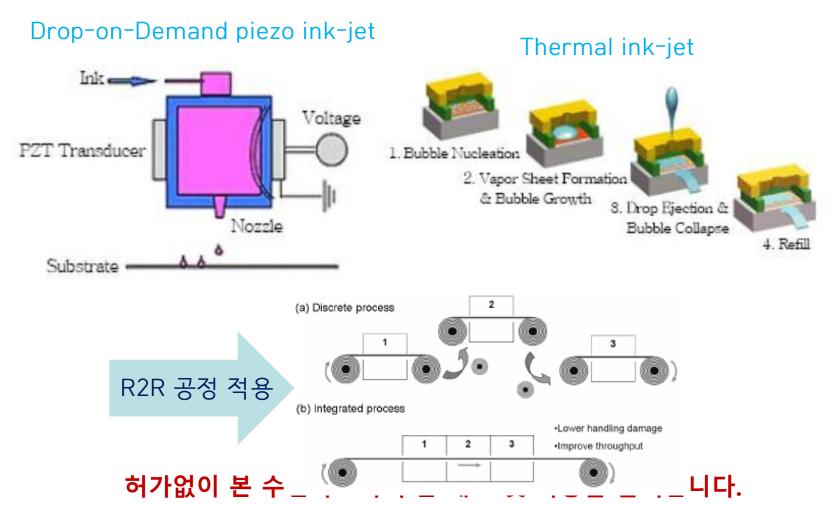

- ③ 디스플레이 등 인쇄전자 소자 제작용 인쇄방법
 - c) 플렉시블 디스플레이 미세전극 패턴 형성
 - 그라비아 오프셋이나 리버스 오프셋 인쇄 (그라비아와 오프셋(offset)인쇄 결합)
 - 그라비아 방식보다 미세 선폭 구현 가능
 - LCD 컬러필터 등 정교한 디스플레이 및 전자회로 제작에 응용


Cliche

Glass Substrate


- 2) 인쇄전자 공정
 - ③ 디스플레이 등 인쇄전자 소자 제작용 인쇄방법
 - d) 프린팅 공정 예시
 - i) 그라비어 프린팅 공정

ii) 플렉소그래피 프린팅 공정



- 2) 인쇄전자 공정
 - ③ 디스플레이 등 인쇄전자 소자 제작용 인쇄방법
 - d) 프린팅 공정 예시
 - iii) 오프셋 리소그래피 프린팅 공정

허가없이 본 수업자료의 무단 배포 및 사용을 불허합니다.

- 2) 인쇄전자 공정
 - ③ 디스플레이 등 인쇄전자 소자 제작용 인쇄방법
 - d) 프린팅 공정 예시
 - iv) 잉크젯프린팅(Ink-jet printing) 공정

