Chapter 17. Principle of diffusion & Mass transfer between Phases

- Driving forces
- Heat : ΔT
- Mass: ΔC

Diffusion

- \checkmark molecular diffusion ordinary diffusion : concentration , cogredient
- ✓ Thermal diffusion : Temp
- ✓ Pressure diffusion : .Pressure difference
- ✓ Force diffusion : External Force

<Assumptions>

- 1) Steady-State
- 2) Binary mixture
- 3) Ordinary mixture

17.1 Molecular Diffusion

- A. Concentration & Velocity
- 1) Concentration

(1) mass concentration

$$\rho = \rho_A + \rho_B$$

 $\rho_A = C_A M_A$: Mass concentration of mixture
 $w_A = \frac{\rho_A}{\rho}$ (mass fraction)
 $w_A + w_B = 1$

(2) Molar concentration $C = C_A + C_A$: Total Molardensity $C_A = \frac{P_A}{M_A}$ x_A (mole fraction) $= \frac{C_A}{C}$ $x_A + x_B = 1$

2) Velocity

u_A: Velocity of "A" on fixed Plane u_B: Velocity of "B" on fixed Plane

(1) Mass Average velocity of Bulk flow $u = u_A w_A + u_B w_B$

- ② Molar (or volume) Average velocity of Bulk Flow $u_{\circ} = u_A x_A + u_B x_B$
- ③ Diffusion Velocity (velocity related to bulk flow)
 i) Based on mass average velocity u

$$u_A - u$$

 $u_B - u$

ii) Based on molar average velocity u_{\circ}

$$u_A - u_\circ$$

 $u_B - u_\circ$

4) Fluxes Relative to bulk flow ; Diffusion flux (1) Mass Flux $\left[\frac{\text{kg}}{\text{m}^2 \cdot \text{s}}\right]$ $j_A = \rho_A(u_A - u)$: diffusion velocity of A (mass average velocity) $j_B = \rho_B(u_B - u)$

② Molar Flux
$$\left[\frac{\text{m ol}}{\text{m}^2 \cdot s}\right]$$

 $J_A = C_A (u_A - u_0) \left[\frac{\text{m ol}}{\text{m}^2 \cdot s}\right]$ diffusion velocity of A (molar average velocity)
 $J_B = C_B (u_B - u_0)$

