i) Two film theory

 k_y : individual mass transfer coefficient in gas phase k_x : individual mass transfer coefficient in liquid phase

i) Two film theory

Gas phase

 $\bullet N_A = k_y (y_A - y_{Ai})$

 k_y : individual mass transfer coefficient in gas phase k_x : individual mass transfer coefficient in liquid phase

Gas phase

• $N_A = k_x (x_{Ai} - x_A)$

Overall phase

• $N_A = K(y_A - x_A)$

•
$$N_A = K_y (y_A - y_{Ae})$$

•
$$N_A = K_x (x_{Ae} - x_A)$$

 K_y : overall mass transfer coefficient in gas phase K_x : overall mass transfer coefficient in liquid phase

 $y_A - y_{Ae}$: overall driving force in gas phase $x_{Ae} - x_A$: overall driving force in liquid phase

$$N_{A} = k_{y}(y_{A} - y_{Ai}) = \frac{(y_{A} - y_{Ai})}{\frac{1}{k_{y}}}$$

$$N_{A} = k_{x}(x_{Ai} - x_{A}) = \frac{(x_{Ai} - x_{A})}{\frac{1}{k_{x}}}$$

$$N_{A} = K_{y}(y_{A} - y_{Ae}) = \frac{(y_{A} - y_{Ae})}{\frac{1}{K_{y}}}$$

$$N_{A} = K_{x}(x_{Ae} - x_{A}) = \frac{(x_{Ae} - x_{A})}{\frac{1}{K_{x}}}$$

$$k_{y}(y_{A} - y_{Ai}) = k_{x}(x_{Ai} - x_{A})$$

Slope = $\frac{y_{A} - y_{Ai}}{x_{Ai} - x_{A}} = -\frac{y_{Ai} - y_{A}}{x_{Ai} - x_{A}} = -\frac{k_{x}}{k_{y}}$

ii) Equilibrium relation

Assume equilibrium line is linear (narrow area) then $y_A = m \cdot x_A + C$ $y_{Ai} = m \cdot x_{Ai} + C$ $y_A = m \cdot x_{Ae} + C$ $y_{Ae} = m \cdot x_A + C$

- iii) Relation between overall m.t.c. & individual m.t.c.
- $y_{Ai} = m \cdot x_{Ai} + C$ $y_A = m \cdot x_{Ae} + C$ $y_{Ae} = m \cdot x_A + C$

(1) For
$$K_y$$
, k_y , and k_x
• $N_A = \frac{y_A - y_{Ai}}{\frac{1}{k_y}} = \frac{(m \cdot x_{Ai} + C) - (m \cdot x_A + C)}{\frac{m}{k_x}} = \frac{y_{Ai} - y_{Ae}}{\frac{m}{k_x}} = \frac{(y_A - y_{Ae})}{\frac{1}{K_y}}$
• $N_A = \frac{y_A - y_{Ae}}{\frac{1}{K_y}} \Rightarrow \frac{1}{K_y} = \frac{y_A - y_{Ai}}{N_A} + \frac{y_A - y_{Ae}}{N_A} = \frac{y_A - y_{Ai}}{k_y(y_A - y_{Ai})} + \frac{\frac{y_A - y_{Ae}}{\frac{y_A - y_{Ae}}{k_x}}}{\frac{m}{k_x}}$

$$\frac{1}{K_y} = \frac{1}{k_y} + \frac{m}{k_x}$$

- iii) Relation between overall m.t.c. & individual m.t.c.
- (2) For K_y , and K_x

 $y_{Ai} = m \cdot x_{Ai} + C$ $y_A = m \cdot x_{Ae} + C$ $y_{Ae} = m \cdot x_A + C$

•
$$N_A = \frac{y_A - y_{Ae}}{\frac{1}{K_y}} = \frac{x_{Ae} - x_A}{\frac{1}{K_\chi}} \frac{m}{m} = \frac{m \cdot x_{Ae} + C - m \cdot x_A - C}{\frac{m}{K_\chi}} = \frac{y_A - y_{Ae}}{\frac{m}{K_\chi}}$$

• $N_A = \frac{y_A - y_{Ae}}{\frac{1}{K_y}} = \frac{y_A - y_{Ae}}{\frac{m}{K_\chi}}$

$$\frac{1}{K_{\mathcal{Y}}} = \frac{m}{K_{\mathcal{X}}}$$

- iii) Relation between overall m.t.c. & individual m.t.c.
- (3) For K_x , k_x , and k_x
- $\frac{m}{K_{\chi}} = \frac{1}{K_{\chi}} \left(= \frac{1}{k_{\chi}} + \frac{m}{k_{\chi}} \right)$
- $\frac{m}{K_x} = \frac{1}{k_y} + \frac{m}{k_x}$

$$\frac{1}{K_x} = \frac{1}{m \cdot k_y} + \frac{1}{k_x}$$

