i) Two film theory

 k_{ν} : individual mass transfer coefficient in gas phase k_x : individual mass transfer coefficient in liquid phase

i) Two film theory

Gas phase

• $N_A = k_v (y_A - y_{Ai})$

 k_{ν} : individual mass transfer coefficient in gas phase k_x : individual mass transfer coefficient in liquid phase

Gas phase

• $N_A = k_x (x_{Ai} - x_A)$

Overall phase

• $N_A = K(\overline{y_A} - \overline{x_A})$

•
$$
N_A = K_y (y_A - y_{Ae})
$$

•
$$
N_A = K_x (x_{Ae} - x_A)
$$

 K_v : overall mass transfer coefficient in gas phase K_x : overall mass transfer coefficient in liquid phase

 $y_A - y_{Ae}$: overall driving force in gas phase $x_{Ae} - x_A$: overall driving force in liquid phase

$$
N_A = k_y (y_A - y_{Ai}) = \frac{(y_A - y_{Ai})}{\frac{1}{k_y}}
$$

\n
$$
N_A = k_x (x_{Ai} - x_A) = \frac{(x_{Ai} - x_A)}{\frac{1}{k_x}}
$$

\n
$$
N_A = K_y (y_A - y_{Ae}) = \frac{(y_A - y_{Ae})}{\frac{1}{k_y}}
$$

\n
$$
N_A = K_x (x_{Ae} - x_A) = \frac{(x_{Ae} - x_A)}{\frac{1}{k_x}}
$$

$$
k_{y}(y_{A} - y_{Ai}) = k_{x}(x_{Ai} - x_{A})
$$

Slope =
$$
\frac{y_A - y_{Ai}}{x_{Ai} - x_A} = -\frac{y_{Ai} - y_A}{x_{Ai} - x_A} = -\frac{k_x}{k_y}
$$

ii) Equilibrium relation

Assume equilibrium line is linear (narrow area) then $y_A = m \cdot x_A + C$

 $y_{Ai} = m \cdot x_{Ai} + C$ $y_A = m \cdot x_{Ae} + C$ $y_{Ae} = m \cdot x_A + C$

- iii) Relation between overall m.t.c. & individual m.t.c. $y_{Ai} = m \cdot x_{Ai} + C$
	- $y_A = m \cdot x_{Ae} + C$ $y_{Ae} = m \cdot x_A + C$

(1) For
$$
K_y
$$
, k_y , and k_x

\n• $N_A = \frac{y_A - y_{Ai}}{\frac{1}{k_y}} = \frac{(m \cdot x_{Ai} + C) - (m \cdot x_A + C)}{\frac{m}{k_x}} = \frac{y_{Ai} - y_{Ae}}{\frac{m}{k_x}} = \frac{(y_A - y_{Ae})}{\frac{1}{k_x}}$

\n• $N_A = \frac{y_A - y_{Ae}}{\frac{1}{k_y}} \Rightarrow \frac{1}{k_y} = \frac{y_A - y_{Ai}}{N_A} + \frac{y_A - y_{Ae}}{N_A} = \frac{y_A - y_{Ai}}{k_y(y_A - y_{Ai})} + \frac{y_A - y_{Ae}}{\frac{m}{k_x}}$

$$
\frac{1}{K_y} = \frac{1}{K_y} + \frac{m}{K_x}
$$

- iii) Relation between overall m.t.c. & individual m.t.c.
- ② For K_y , and K_x

 $y_{Ai} = m \cdot x_{Ai} + C$ $y_A = m \cdot x_{Ae} + C$ $y_{Ae} = m \cdot x_A + C$

•
$$
N_A = \frac{y_A - y_{Ae}}{\frac{1}{K_y}} = \frac{x_{Ae} - x_A}{\frac{1}{K_x}} \frac{m}{m} = \frac{m \cdot x_{Ae} + C - m \cdot x_A - C}{\frac{m}{K_x}} = \frac{y_A - y_{Ae}}{\frac{m}{K_x}}
$$

\n• $N_A = \frac{y_A - y_{Ae}}{\frac{1}{K_y}} = \frac{y_A - y_{Ae}}{\frac{m}{K_x}}$

$$
\frac{1}{K_y} = \frac{m}{K_x}
$$

- iii) Relation between overall m.t.c. & individual m.t.c.
- $\circled{3}$ For K_x , k_x , and k_x
- $\frac{m}{v} = \frac{1}{v} = \frac{1}{v}$ K_x K_y $=\frac{1}{\nu}\bigg(=\frac{1}{\nu}+\frac{n}{\nu}$ $K_{y} \setminus k_{y}$ $=\frac{1}{k}+\frac{m}{k}$ k_y k_x) $+\frac{m}{l_{1}}$ k_{x} /
- $\frac{m}{v} = \frac{1}{v} + \frac{m}{v}$ K_x k_y $=\frac{1}{k}+\frac{m}{k}$ k_y k_x $+\frac{m}{l_{\rm s}}$ k_{χ}

$$
\frac{1}{K_x} = \frac{1}{m \cdot k_y} + \frac{1}{k_x}
$$

