Chapter 11. Principle of heat flow in fluid

convection : Natural convection & Forced convection

1. Newton's equation of cooling

 $q \propto A \Delta T$ $q=h \ A \ \Delta T \hspace{0.5cm}$ at = \boxplus – \otimes

where, h is heat transfer coefficient

 $h = h$ (geometry, physical property of fluid, fluid velocity...)

$$
\frac{W}{m^{2} C} \Big], \frac{Btu}{ft^{2} hr^{2}} \Big]
$$

$$
q = \frac{\Delta T}{R_{\text{conv}}} \qquad R_{\text{conv}} = \frac{1}{h A}
$$

2. Types of Heat Exchanger (HEX)

1) Overall heat transfer coefficient

 $q = U A (T_h - T_c)$

 $T_h - T_c$: Overall local temperature difference U : local overall heat transfer coefficient

Differential rate of heat transfer through infinitesimal cross-sectional area,

$$
\begin{aligned}\n\delta q &= U_i dA_i \Delta T \\
&= U_o dA_o \Delta T \\
U_i dA_i &= U_o dA_o \\
\frac{U_i}{U_o} &= \frac{dA_o}{dA_i} = \frac{D_o}{D_i}\n\end{aligned}
$$
\n $dA_i = \pi D_i dl$

2) Heat balance

Hot fluid side

$$
H_h = (H_h + dH_h) + \delta q
$$

\n
$$
dH_h = -\delta q
$$

\n
$$
\delta q = -m_h C_{ph} dT_h
$$

\n
$$
q = -m_h C_{ph} (T_h - T_{h,a}) = m_h C_{ph} (T_{h,a} - T_h)
$$

$$
\begin{aligned} \textit{Total heat transfer rate} \\ q_T = m_h C_{ph} \big(T_{h,a} - T_{h,b} \big) \end{aligned}
$$

2) Heat balance

Cold fluid side

$$
(H_c + dH_c) + \delta q = H_c
$$

$$
H_c = -\delta q
$$

$$
dH_c = \dot{m}_c C_{pc} dT_c = -\delta q
$$

$$
\int \delta q = \int_{T_{ca}}^{T_c} -\dot{m}_c C_{pc} dT_c
$$

$$
q = -\dot{m}_c C_{pc} d(T_c - T_{c,a}) = \dot{m}_c C_{pc} (T_{c,a} - T_c)
$$

Total heat transfer rate

 $q_T = \dot{m}_c C_{pc} (T_{c,a} - T_{c,b}) = -\Delta H_{T,h} = \Delta H_{T,c}$

2) Heat balance

Overall heat balance

$$
(q_T =) \dot{m}_c C_{pc} (T_{c,a} - T_{c,b}) = \dot{m}_h C_{ph} (T_{h,a} - T_{h,b})
$$

- $\Delta H_{T,h} = \Delta H_{T,c}$
- $\{\dot{m}_h C_{ph} (T_{h,b} - T_{h,a})\} = \dot{m}_c C_{pc} (T_{c,a} - T_{c,b})$

$$
spec = \frac{d(\Delta T)}{\delta q} = \frac{\Delta T_2 - \Delta T_1}{q_T} \qquad \delta q = U dA \Delta T
$$

where,
$$
q_T = \dot{m}_c C_{pc} (T_{c,a} - T_{c,b}) = \dot{m}_h C_{ph} (T_{h,a} - T_{h,b})
$$

Case I, U is constant

$$
\int_{\Delta T_1}^{\Delta T_2} \frac{1}{U} \frac{d(\Delta T)}{\Delta T} = \int_0^{A_T} \frac{\Delta T_2 - \Delta T_1}{q_T} dA
$$

\n
$$
\frac{1}{U} \ln \frac{\Delta T_2}{\Delta T_1} = \frac{\Delta T_2 - \Delta T_1}{q_T} A_T
$$

\n
$$
\therefore q_T = UA_T \frac{\Delta T_2 - \Delta T_1}{\ln \frac{\Delta T_2}{\Delta T_1}}
$$

\n
$$
\frac{1}{\Delta T_1} \ln \frac{\Delta T_2 - \Delta T_1}{\Delta T_1}
$$

\n
$$
\frac{1}{\Delta T_1} \ln \frac{\Delta T_2}{\Delta T_1}
$$

\nIf *m* and *C_p* are constant
\n
$$
\frac{d(\Delta T)}{\delta q} = \frac{\Delta T_2 - \Delta T_1}{q_T - 0} \Leftrightarrow \delta q = ud \overline{A} \Delta T
$$

Case II, U is **NOT** constant $\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac$ $a + b\Delta T - b\Delta T$ $a(a + b\Delta T)\Delta T \stackrel{\alpha(\Delta T)}{\sim}$ ΔT_2 $a + b$. ΔT_1 $u(u)$ $d(\Delta T) = \begin{pmatrix} \frac{-2}{2} & \frac{-1}{2}a \end{pmatrix}$ $\Delta T_2 - \Delta T_1$ _d q_T and dA $A_T \wedge T_2 =$ $\mathbf{0}$ \mathbf{q} $U = U(\Delta T) = a + b\Delta T$ $d(\Delta T)$ ΔT_2 – $\frac{dQ}{d\Delta T} = \frac{12}{q_T}$ $\Delta T_2 - \Delta T_1$ q_T $1 \int^{\Delta T_2}$ $\left[$ 0 $\frac{a}{a}$ _{$\int_{\Delta T_1}$} $\frac{a}{a + b\Delta T}$ $a + b\Delta T$ l $\frac{a + b\Delta T}{(a + b\Delta T)\Delta T} - \frac{b\Delta T}{(a + b\Delta T)\Delta T}$ $b\Delta T$ $\Big|$ $\$ $(a + b\Delta T)\Delta T$ ["] ΔT_2 $\begin{bmatrix} a & -b \end{bmatrix}$ ΔT_1 [(u] $d(\Delta T)$ $= -1$ $\frac{1}{2}$ $1 \int^{\Delta T_2}$ $\left[1 \right]$ $\frac{a}{a}$ $\int_{\Delta T_a}$ $\frac{a}{\Delta T} - \frac{a}{(a + a)}$ $1 \qquad \qquad b$ $\frac{1}{\Delta T} - \frac{1}{(a + b\Delta T)\Delta T}$ $b\Delta T$ $\Big]$ $\Big]$ $\Big]$ $(a + b\Delta T)\Delta T$ ["] ΔT_2 [1 ΔT_1 $\lfloor \Delta T_1 \rfloor$ $d(\Delta T) = \frac{-2 - 1}{2} A_1$ $\Delta T_2 - \Delta T_1$ q_T \cdots $1 \int_{1} \Delta T_2$ $a \mid \Delta T_1$ $\ln \frac{1}{\Delta T} - \ln \frac{1}{T}$ ΔT_2 ΔT_1 a $\frac{\overline{a} - \underline{b}}{\Delta T_1} - \ln \frac{\overline{a} + \overline{b} - \underline{b}}{\overline{a} + \overline{b} \Delta T_1}$ $a + b\Delta T_2$ ΔT_2 $\frac{a + b\Delta T_1}{a + b\Delta T_1} = \frac{b^2 - b^2 - 1}{q_T} A_1$ $\Delta T_2 - \Delta T_1$ q_T ¹¹^T A_T $\ln \frac{1}{\sqrt{T} (r+1)}$ $\Delta T_2(a + b\Delta T_1)$ $a\Delta T_2$ $\frac{1}{\Delta T_1(a + b\Delta T_2)} = \frac{1}{q_T}$ $a\Delta T_2 - a\Delta T_1$ q_T \ldots A_T $\ln \frac{1}{\Delta T H} =$ $\Delta T_2 U_1__\Delta T_2 U$ $\frac{1}{\Delta T_1 U_2} = \frac{1}{\Delta T_1} \frac{1}{q_T}$ $\Delta T_2 U_1 - \Delta T_1 U_2$ q_T and q_T A_T

$$
\Delta T_2 U_1 = \Delta T_2 a + b\Delta T_1 \Delta T_2
$$

$$
\Delta T_1 U_2 = \Delta T_1 a + b\Delta T_2 \Delta T_1
$$

$$
\Delta T_2 U_1 - \Delta T_1 U_2 = a\Delta T_2 a - a\Delta T_1
$$

$$
\therefore q_T = A_T \frac{U_1 \Delta T_2 - U_2 \Delta T_1}{h \frac{U_1 \Delta T_2}{U_2 \Delta T_1}}
$$

 A_T

- **4. Relation between overall heat transfer coefficient and**
- 1) For clean surface (no deposit)

individual heat transfer coefficient

$$
\delta q = \frac{\Delta T_i}{R_i} \rightarrow \begin{pmatrix} \Delta T_i = T_h - T_{h,w} \\ R_i = 1/(h_i dA_i) \end{pmatrix}
$$

$$
\delta q = \frac{\Delta T_w}{R_w} \rightarrow \begin{pmatrix} \Delta T_w = T_{h,w} - T_{c,w} \\ R_i = x_w / k_w dA_L \end{pmatrix}
$$

$$
\delta q = \frac{\Delta T_o}{R_o} \rightarrow \begin{pmatrix} \Delta T_o = T_{c,w} - T_c \\ R_o = 1/(h_o dA_o) \end{pmatrix}
$$

$$
\delta q = \frac{T_h - T_c}{R_i + R_w + R_o} = \frac{\Delta T}{R_i + R_w + R_o} \dots \dots \quad A
$$

$$
\delta q = U_i dA_i \Delta T = U_o dA_o \Delta T
$$
--- B

4. Relation between overall heat transfer coefficient and

1) For clean surface (no deposit)

individual heat transfer coefficient

 $h_0 dA_0$

From A & B,

$$
\frac{1}{U_i dA_i} = R_i + R_w + R_o = \frac{1}{h_i dA_i} + \frac{x_w}{k_w dA_L} + \frac{1}{h_o dA_o}
$$
\n
$$
\frac{1}{U_i} = \frac{1}{h_i} + \frac{x_w dA_i}{k_w dA_L} + \frac{1}{h_o} \frac{dA_i}{dA_o}
$$
\n
$$
\frac{1}{U_i} = \frac{1}{h_i} + \frac{x_w D_i}{k_w D_L} + \frac{1}{h_o} \frac{D_i}{D_o}
$$
\n
$$
\delta q = U_i dA_i \Delta T \rightarrow \frac{\Delta T}{1/(U_i dA_i)} \quad \text{--- A}
$$
\n
$$
\delta q = \frac{\Delta T}{\frac{1}{h_i dA_i} + \frac{x_w}{k_w dA_L} + \frac{1}{h_o dA_o}}
$$

$$
\frac{1}{U_i} = \frac{1}{h_i} + \frac{x_w D_i}{k_w D_L} + \frac{1}{h_o} \frac{D_i}{D_o}
$$
\n
$$
\frac{1}{U_o} = \frac{1}{h_i} \frac{D_o}{D_i} + \frac{x_w D_o}{k_w D_L} + \frac{1}{h_o}
$$

4. Relation between overall heat transfer coefficient and

individual heat transfer coefficient

