QUANTITIVE PID TUNING METHODS 1.5

- Tuning PID parameters is not a trivial task in general.
- Various tuning methods have been proposed for different model descriptions and performance criteria.

1.5.1 CONTINUOUS CYCLING METHOD

Frequently called Ziegler-Nichols method since it was first proposed by Ziegler and Nichols (1942). Also referred to as loop tuning or the ultimate sensitivity method.

Procedure:

step1 Under P-control, set K_c at a low value. Be sure to choose the right (direct/reverse) mode.

step 2 Increase K_c slowly and monitor $y(t)$ whether it shows oscillating response.

If $y(t)$ does not respond to K_c change, apply a short period of small pulse input on $r(t)$.

step 3 Increase K_c until $y(t)$ shows continuous cycling. Let K_u be K_c at this condition. Also let T_u be the period of oscillation under this condition.

$K_c < K_u$

step 4 Calculate and implement PID parameters using the the Ziegler-Nichols tuning tables:

Ziegler-Nichols Controller Settings

Remarks :

- We call
	- $-K_u$ ultimate gain
	- T_u ultimate period $(\omega_{co} = 2\pi/T_u$ critical frequency)
- Ziegler-Nichols tuning is based on the process characteristic at a single point where the closed-loop under P-control shows continuous cycling.

At ω_{co} ,

 $|G_cK_c|_{\omega_{co}} = 1$ $y(t)$ is 180^o (phase lag) behind $u(t)$. \mathbf{I}

• K_u is the largest K_c for closed-loop stability under P-control. When $K_c = 0.5K_u$ under P-control, the closed-loop approximately shows 1/4 (Quarter) decay ratio response. This roughly gives 50% overshoot.

 \bullet An alternative way to emperically find K_u and T_u is to use relay feedack control (sometimes called bang-bang control).

Under relay feedback, the following repsonse is obtained:

$$
K_u = \frac{4(u_{max} - u_{min})}{\pi A}, \quad T_u: \text{ from the response}
$$

Typical Responses of Z-N Tuning

 Since 50% overshoot is considered too oscillatory in chemical process control, the following modied Ziegler-Nichols settings have been proposed for PID contollers:

Modied Ziegler-Nichols Settings

1.5.2 REACTION-CURVE-BASED METHOD

Not all but many SISO(single-input single-output) chemical processes show step responses which can be well approximated by that of the First-Order Plus Dead Time(FOPDT) process.

The FOPDT process is represented by three parameters

- K_p steady state gain defined by $\Delta y_{ss}/\Delta u_{ss}$
- \bullet d dead time (min), no response during this period

 τ time constant, represents the speed of the process dynamics.

$$
G(s) = \frac{K_p e^{-ds}}{\tau s + 1}
$$

Procedure

- step 1 Wait until the process is settled at the desired set point.
- step 2 Switch the A/M toggle to the manual position and increase the CO $(u(t))$ by Δu_{ss} stepwise.
- step 3 Record the output reponse and find an approximate FOPDT model using one of the following methods:

 Drawing a tangent is apt to include signicant error, especially when the measurement is noisy. To avoid this trouble, the following method is recommended:

1. Obtain $K_p = \Delta y_{ss}/\Delta u_{ss}$.

- 2. Estimate the area A_0 .
- 3. Let $\tau + d = A_0/K_p$ and estimate the area A_1 .
- 4. Then $\tau = 2.782A_1/K_p$ and $d = A_0/K_p \tau$
- step 4 Once a FOPDT model is obtained, PID setting can be done based on a tuning rule in the next subsection.

Popular tuning rules are Quater-decay ratio setting and Integral error criterion-based setting.

1.5.3 FOPDT-BASED TUNING RULES

 The following PID tuning rules are applicable for FOPDT processes with $0.1 < d/\tau < 1$.

1/4 Decay Ratio Settings

• Z-N tuning for the FOPDT model.

