1.5 QUANTITIVE PID TUNING METHODS

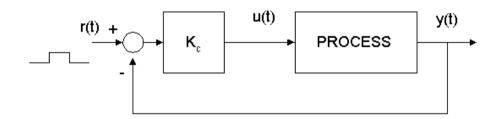
- Tuning PID parameters is not a trivial task in general.
- Various tuning methods have been proposed for different model descriptions and performance criteria.

1.5.1 CONTINUOUS CYCLING METHOD

Frequently called Ziegler-Nichols method since it was first proposed by Ziegler and Nichols (1942). Also referred to as loop tuning or the ultimate sensitivity method.

Procedure:

step1 Under P-control, set K_c at a low value. Be sure to choose the right (direct/reverse) mode.

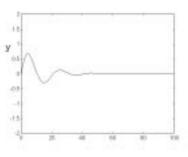


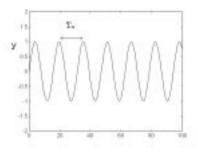
step 2 Increase K_c slowly and monitor y(t) whether it shows oscillating response.

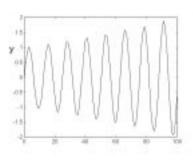
If y(t) does not respond to K_c change, apply a short period of small pulse input on r(t).

step 3 Increase K_c until y(t) shows continuous cycling. Let K_u be K_c at this condition. Also let T_u be the period of oscillation under this condition.

$K_c < K_u$







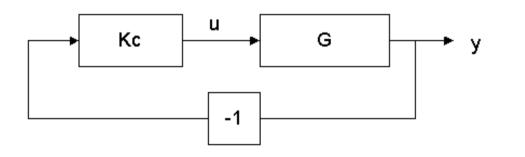
step 4 Calculate and implement PID parameters using the the Ziegler-Nichols
tuning tables:

Controller	K_c	T_{I}	T_D
Р	$0.5K_u$		
PI	$0.45K_u$	$T_{u}/1.2$	
PID	$0.6K_u$	$T_u/2$	$T_u/8$

Ziegler-Nichols Controller Settings

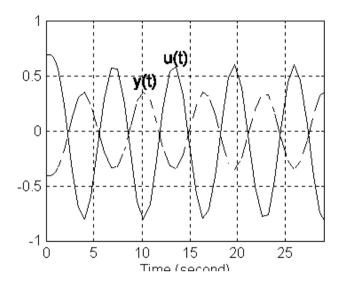
Remarks :

- We call
 - $-K_u$ ultimate gain
 - $-T_u$ ultimate period ($\omega_{co} = 2\pi/T_u$ critical frequency)
- Ziegler-Nichols tuning is based on the process characteristic at a single point where the closed-loop under P-control shows continuous cycling.

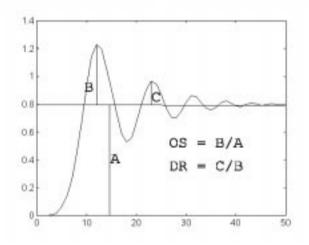


At ω_{co} ,

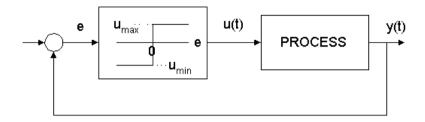
 $|G_c K_c|_{\omega_{co}} = 1$ y(t) is 180° (phase lag) behind u(t). I



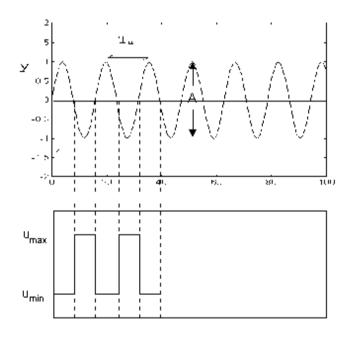
• K_u is the largest K_c for closed-loop stability under P-control. When $K_c = 0.5K_u$ under P-control, the closed-loop approximately shows 1/4 (Quarter) decay ratio response. This roughly gives 50% overshoot.



• An alternative way to emperically find K_u and T_u is to use relay feedack control (sometimes called bang-bang control).

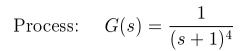


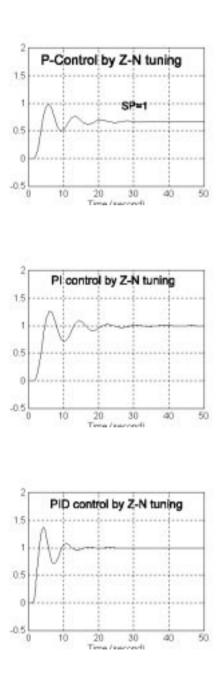
Under relay feedback, the following repsonse is obtained:



$$K_u = \frac{4(u_{max} - u_{min})}{\pi A}, \quad T_u: \text{ from the repsonse}$$

Typical Responses of Z-N Tuning

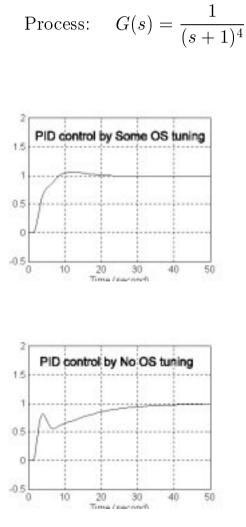


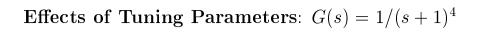


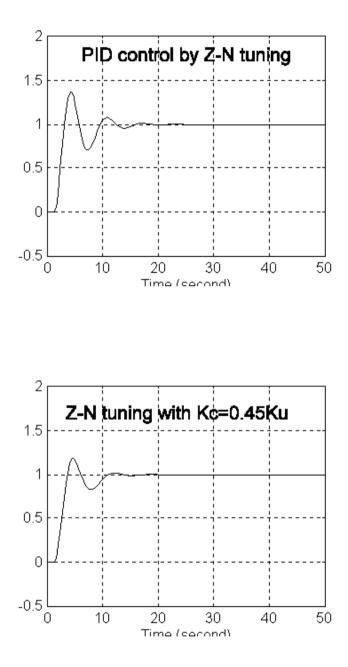
• Since 50% overshoot is considered too oscillatory in chemical process control, the following modified Ziegler-Nichols settings have been proposed for PID contollers:

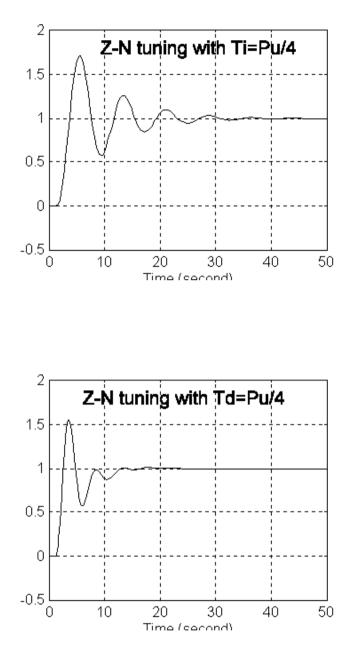
	K _c	T_I	T_D	
Original(1/4 decay ratio)	$0.6K_u$	$T_u/2$	$T_u/8$	
Some Overshoot	$0.33K_u$	$T_u/2$	$T_u/3$	
No Overshoot	$0.2T_u$	T_{u}	$T_u/3$	

Modified Ziegler-Nichols Settings

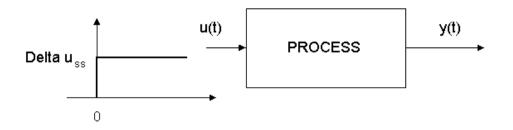




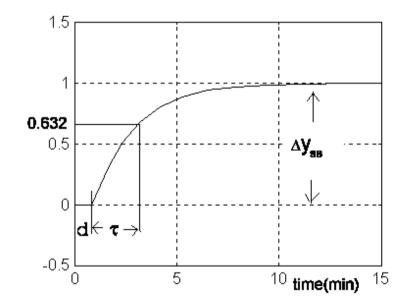




1.5.2 REACTION-CURVE-BASED METHOD



Not all but many SISO(single-input single-output) chemical processes show step responses which can be well approximated by that of the **First-Order Plus Dead Time(FOPDT)** process.



The FOPDT process is represented by three parameters

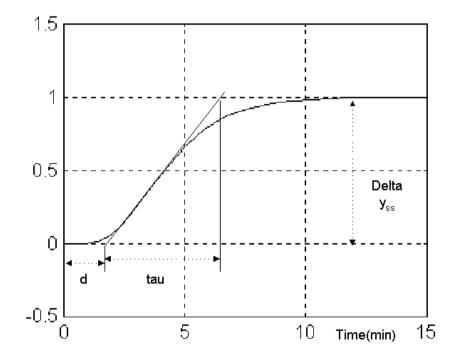
- K_p steady state gain defined by $\Delta y_{ss}/\Delta u_{ss}$
- d dead time (min), no response during this period

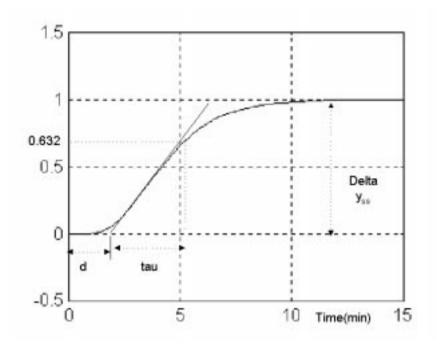
• τ time constant, represents the speed of the process dynamics.

$$G(s) = \frac{K_p e^{-ds}}{\tau s + 1}$$

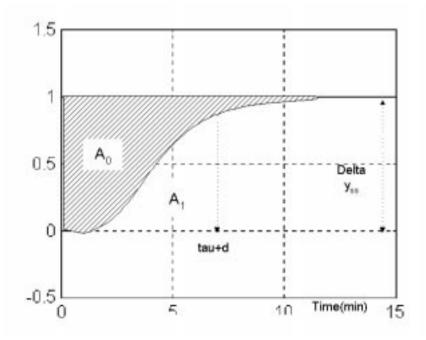
Procedure

- step 1 Wait until the process is settled at the desired set point.
- step 2 Switch the A/M toggle to the manual position and increase the CO (u(t)) by Δu_{ss} stepwise.
- step 3 Record the output reponse and find an approximate FOPDT model using one of the following methods:





• Drawing a tangent is apt to include significant error, especially when the measurement is noisy. To avoid this trouble, the following method is recommended:



1. Obtain $K_p = \Delta y_{ss} / \Delta u_{ss}$.

- 2. Estimate the area A_0 .
- 3. Let $\tau + d = A_0/K_p$ and estimate the area A_1 .
- 4. Then $\tau = 2.782 A_1/K_p$ and $d = A_0/K_p \tau$
- step 4 Once a FOPDT model is obtained, PID setting can be done based on a tuning rule in the next subsection.

Popular tuning rules are Quater-decay ratio setting and Integral error criterion-based setting.

1.5.3 FOPDT-BASED TUNING RULES

• The following PID tuning rules are applicable for FOPDT processes with $0.1 < d/\tau < 1$.

1/4 Decay Ratio Settings

• Z-N tuning for the FOPDT model.

Controller	K_c	T_I	T_D
Р	$(au/K_p d)$		
PI	$0.9(au/K_p d)$	3.33d	
PID	$1.2(au/K_p d)$	2.0d	0.5d