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Chapter 7

SYSTEM IDENTIFICATION

Identi�cation of process dynamics is perhaps the most time consuming step

in implementing an MPC and one that requires relatively high expertise

from the user. In this section, we give introduction to various identi�cation

methods and touch upon some key issues that should help an engineer

obtain models on a reliable basis. Since system identi�cation is a very

broad subject that can easily take up an entire book, we will limit our

objective to giving just an overview and providing a starting point for

further exploration of the �eld. Because of this, our treatment of various

methods and issues will necessarily be brief and informal. References will be

given at the end for more complete, detailed treatments of the various

topics presented in this chapter.

7.1 PROBLEM OVERVIEW

The goal of identi�cation is to obtain a mathematical relation that reliably

predicts the behavior of outputs, using input output data gathered from the

process. For conveninence, the mathematical relation searched for is often

limited to linear ones. As we saw in the previous chapter, both known and
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unknown inputs a�ect the outputs. Since many inputs change in a random,

but correlated manner, it is often desirable to identify a model that has

both deterministic and stochastic components.

In terms of how input output data are translated into a mathematical

relation, the �eld of identi�cation can be divided broadly into two branches:

parametric identi�cation and nonparametric identi�cation. In parameteric

identi�cation, the structure of the mathematical relation is �xed a priori

and parameters of the structure are �tted to the data. In nonparametric

identi�cation, no (or very little) assumption is made with respect to the

model structure. Frequency response identi�cation is nonparametric.

Impulse response identi�cation is also nonparametric, but it can also be

viewed as parametric identi�cation since a impulse response of a �nite

length is often identi�ed.

As a �nal note, it is important not to forget the end-use of the model,

which is to analyze and design a feedback control system in our case.

Accuracy of a model must ultimately be judged in view of how well the

model predicts the output behavior with the intended feedback control

system in place. This consideration must be re
ected in all phases of

identi�cation including test input design, data �ltering, model structure

selection, and parameter estimation.

7.2 PARAMETRIC IDENTIFICATION METHODS

In parametric identi�cation, the model structure is set in prior to the model

�tting. The key objective is then to identify the model parameters, based on

given input output data. Although a particular model structure is assumed

for parameter estimation, one often adjusts the model structure iteratively

based on the result of �tting (for example, through residual analysis).
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7.2.1 MODEL STRUCTURES

A general structure for parametric identi�cation is:

y(k) = G(q; �)u(k) +H(q; �)"(k) (7.1)

where y is the output and u is the input (most of times, this will be a

manipulated input, but it can also be a measured disturbance variable). For

systems with stationary disturbances, "(k) can be assumed to be white noise

and H(q; �) a stable, stably invertible and normalized (i.e., H(1; �) = 1)

transfer function, without loss of generality. In the case that the

disturbance is better described by a stochastic process driven by integrated

white noise, we can replace y(k) and u(k) with �y(k) and �u(k) .

Within the general structure, di�erent parametrizations exist. Let us

discuss some popular ones, �rst in the single input, single output context.

� ARX Model If we represent G as a rational function and express it

as a linear equation with an additive error term, we obtain

y(k)+a1y(k�1)+ � � �+any(k�n) = b1u(k�1)+ � � �+bmu(k�m)+"(k)

(7.2)

When the equation error "(k) is taken as a white noise sequence, the

resulting model is called an ARX model (AR for Auto-Regressive and

X for eXtra input u). Hence, the ARX model corresponds to the

following parametrization of the transfer functions:

G(q; �) = B(q)
A(q)

�= b1q
�1+���+bmq

�m

1+a1q�1+���+anq�n

H(q; �) = 1
A(q)

�= 1
1+a1q�1+���+anq�n

(7.3)

A high-order ARX model is a good choice when the system order is
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unknown. To see this, note that (7.1) can be written as

H�1(q; �)y(k) = H�1(q; �)G(q; �)u(k) + "(k) (7.4)

Since H�1 is assumed stable, if G is stable,

H�1(q; �) � 1 + a1q
�1 + � � �+ anq

�n

H�1(q; �)G(q; �) � 1 + b1q
�1 + � � �+ bmq

�m
(7.5)

for su�ciently large n and m.

� ARMAX Model A natural extension to the ARX parametrization

is the ARMAX model, which expresses the equation error term as a

moving average of white noise:

y(k) + a1y(k � 1) + � � �+ any(k � n)

= b1u(k � 1) + � � �+ bmu(k �m)

+"(k) + c1"(k � 1) + � � �+ c`"(k � `)

(7.6)

For the ARMAX model, the parametrization of the noise transfer

function changes to

H(q; �) =
C(q)

A(q)
�=

1 + c1q
�1 + � � �+ c`q

�`

1 + a1q�1 + � � �+ anq�n
(7.7)

Because of the moving average term, an ARMAX model can

potentially represent a system with much fewer parameters when

compared to an ARX model. In fact, a state-space system of order n

always have an input output representation given by an nth order

ARMAX model. However, parameter estimation is more complicated

and over-parametrization can cause loss of identi�ability (i.e., the

parameter values can become nonunique).

� Output Error Model Both ARX and ARMAX model puts common

poles on G and H. In some cases, it may be more natural to model
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them separately. One such parametrization is the Output Error (OE)

model given below:

~y(k) + a1~y(k � 1) + � � �+ an~y(k � n) = b1u(k � 1) + � � �+ bmu(k �m)

y(k) = ~y(k) + "(k)

(7.8)

In the above ~y(k) represents the disturbance-free output. Customarily,

"(k) is assumed to be white noise. This means the OE structure gives

G(q; �) =
A(q)

B(q)
and H(q) = 1 (7.9)

A slightly more general case is when H(q) is not 1, but completely

known (i.e., disturbance is a colored noise with known spectrum). In

this case, we can write

H�1(q)y(k)| {z }
yf (k)

= G(q; �)H�1u(k)| {z }
uf (k)

+"(k) (7.10)

Note that the above is in the form of (7.8). Simple pre�ltering of input

and output decorrelates the noise and gives the standard OE structure.

Parameter estimtion is complicated by the fact that ~y's are not known,

and depend on the parameters.

� FIR and Orthogonal Expansion Model A special kind of output

error structure is obtained when G(q; �) is parametrized linearly. For

instance, when G(q) is stable, it can be expanded as a power series of

q�1. One obtains

G(q) =
1X
i=1

biq
�i (7.11)

Truncating the power series after n-terms, one obtains the model

y(k) =
�
b1q

�1 + b2q
�2 + � � �+ bnq

�n
�
u(k) +H(q)"(k) (7.12)

This is the Finite Impulse Response model that we used in the basic
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part of this book.

A general form of an orthogonal expansion model is

G(q) =
1X
i=1

biBi(q) (7.13)

One of the popular choices for fBi(q)g is the so called Laguere

functions de�ned as

Bi(q) =

p
1� �2

q � �

 
1� �q

q � �

!i�1
(7.14)

An advantage of using this function is that the knowledge of process's

dominant time constant can be incorporated into the choice of � to

speed up the convergence (since it helps curtail the number of

parameters).

� Box-Jenkins Model A natural generalization of the output error

model is to let the disturbance transfer function be a rational function

of unknown parameters. This leads to the Box-Jenkins model which

has the structure of

y(k) =
B(q)

A(q)
u(k) +

C(q)

D(q)
"(k) (7.15)

This model structure is quite general, but the parameter estimation is

nonlinear and loss of identi�ability can occur.

All of the above models can be generalized to the case where H(q; �)

contains an integrator. For instance, we can extend the ARMAX model to

y(k) =
B(q)

A(q)
u(k) +

1

1� q�1
C(q)

A(q)
"(k) (7.16)

The above is called ARIMAX model (I for integration). In terms of

parameter estimation, the resulting problem is the same since we can
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transform the above to

�y(k) =
B(q)

A(q)
�u(k) +

C(q)

A(q)
"(k) (7.17)

The same holds for all the other model structues.

Extensions to the multivariable case are mostly straightforward, but can

involve some complications. One may choose to �t each output

independently using one of the above structures (This is called \MISO

identi�cation"). In this case, the only modi�cation to the above is that

B(q) is now a row vector containing nu polynomials, where nu is the

number of inputs. The parameter estimation problem remains e the same

except in the number of parameters. On the other hand, some applications

require a model that capture disturbance correlations among di�erent

outputs. This requires MIMO identi�cation where all the outputs are �tted

to a single multivariable model on a simultaneous basis. In this case,

A(q); B(q), etc. are matrix polynomials of appropriate dimension. For

instance, the ARX model becomes

y(k) = A�1(q)B(q)u(k) +A�1(q)"(k) (7.18)

where A(q) and B(q) are ny � ny and ny � nu matrix polynomials

respectively. The parameterization of these matrices can be a subtle issue.

For instance, if all matrix entries are assumed to be unknown, one can

easily lose identi�ability. In general, signi�cant prior knowledge is needed to

obtain a correct parameterization. In addition, parameter estimation can be

numerically challenging due to the large number of parameters, especially

when the model structure leads to a nonlinear estimation problem.

133


