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criterion. Although it may be di�cult to come up with an exact description

of the plant in reality, studying these methods can provide some useful

insights into the performance of empirical methods like the prediction error

minimization. We present the two most popular methods here.

7.2.3.1 Maximum Likelihood Estimation

In system identi�cation, one is trying to extract system information out of

measurements that are inherently unreliable. In maximum likelihood

estimation, this is formalized by describing each observation as a realizaton

of a random variable with certain probability distribution. For instance, if

we assume a model

y(k) = �T (k)� + "(k) (7.49)

where "(k) is a Gaussian variable with zero mean and variance r", then the

probability density function (PDF) of y(k) becomes

dF (�; y(k)) =
1p
2�r"

exp

8<
:�

(� � �T (k)�)2

2r"

9=
; (7.50)

In the above, � represents a particular realized value for y(k).

In parametric identi�cation with N data points, we can work with a joint

PDF for YN
�= (y(1); � � � ; y(N)). Let us denote the joint PDF as

dF (�N ;YN). Again, �
N is a variable representing realization of YN . Suppose

the actual observations are given as ŶN = (ŷ(1); � � � ; ŷ(N)). Once we insert

these values into the probability density function, dF (ŶN ;YN) is now a

deterministic function of � called \likelihood function." We denote the

likelihood function for the observation ŶN as `(�jŶN).

The basic idea of maximum likelihood estimation is to make the

observations \as likely as possible" by choosing � such that the liklihood
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function is maximized. In other words,

�̂ML
N = arg

�
max
�

`(�jŶN)
�

(7.51)

Often, it is generally quite di�cult to derive the likelihood function from a

stochastic system model. An exception is the case when the model can be

put into a linear predictor form in which the observation is linear with

respect to both the unknown parameters and random variables.

Let us apply the maximum likelihood method to the following linear

identi�cation problem:

YN = �N� + EN (7.52)

In the above, we assume that EN is a zero-mean Gaussian variable vector of

covariance RE . Then, we have

dF (ŶN ;YN) = dF (ŶN � �N�; EN) (7.53)

=
1q

(2�)Ndet(RE)
exp

(
�1

2
(ŶN � �N�)

TR�1
E (ŶN � �N�)

)

The maximum likelihood estimator is de�ned as

�̂ML
N = arg

�
max
�

dF (ŶN ;YN)
�

(7.54)

= arg
�
max
�

log
�
dF (ŶN ;YN)

��
(7.55)

= arg
(
max
�

 
�1

2
(ŶN � �N�)

TRE(ŶN � �N�)
!)

(7.56)

= arg
(
min
�

 
1

2
(ŶN � �N�)

TRE(ŶN � �N�)
!)

(7.57)

Note that the above is a weighted least squares estimator. We see that,

when the weighting matrix is chosen as the inverse of the covariance matrix

for the output error term EN , the weighted least squares estimation is

equivalent to the maximum likelihood estimation. In addition, the

unweighted least squares estimator is a maximum likelihood estimator for
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the case when the output error is an i.i.d. Gaussian sequence (in which case

the covariance matrix for EN is in the form of r"IN).

7.2.3.2 Bayesian Estimation

Bayesian estimation is a philosophically di�erent approach to the parameter

estimation problem. In this approach, parameters themselves are viewed as

random variables with a certain prior probability distribution. If the

observations are described in terms of the parameter vector, the probability

distribution of the parameter vector changes after the observations. The

distribution after the observations is called posterior probability

distribution, which is given by the conditional distribution of the parameter

vector conditioned with the observation vector. The parameter value for

which the posterior PDF attains its maximum is called the \maximum a

posteriori (MAP) estimate." It is also possible to use the mean of the

posterior distribution as an estimate, which gives the \minimum variance

estimate."

One of the useful rules in computing the posterior PDF is Bayes's rule. Let

us denote the conditional PDF of the parameter vector for given

observations as dF (�̂j�N ; �jYN). Then, Bayes's rule says

dF (�̂j�N ; �jYN) = dF (�N j�̂;YN j�) � dF (�̂; �)
dF (�N ;YN)

(7.58)

dF (�N ;YN) is independent of � and therefore is constant once it is evaluated

for given observation ŶN . Hence, the MAP estimator becomes

�̂MAP
N = arg

(
max
�̂

dF (�N j�̂;YN j�) � dF (�̂; �)
)

(7.59)

Note that we end up with a parameter value that maximizes the product of

the likelihood function and the prior density.
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Let us again apply this concept to the linear parameter estimation problem

of

YN = �N� + EN (7.60)

where EN is a Gaussian vector of zero mean and covariance RE . We also

treat � as a Gaussian vector of mean �̂(0) and covariance P (0). Hence, the

prior distribution is a normal distribution of the above mean and covariance.

Next, let us evaluate the posterior PDF using Bayes's rule.

dF (�̂jŶN ; �jYN) = [constant]�dFN (Ŷ ;YN)(�N�;RE ) �dFN (�̂; �)(�̂(0);P (0)) (7.61)

where

dFN (x̂; x)(�x;R) =
1q

(2�)Ndet(R)
exp

(
�1

2
(x̂� �x)TR�1(x̂� �x)

)
(7.62)

The MAP estimate can be obtained by maximizing the logarithm of the

posterior PDF:

�̂MAP
N = arg

(
max
�̂

 
�1

2
(ŶN � �N �̂)

TR�1
E (ŶN � �N �̂)� 1

2
(�̂ � �̂(0))TP�1(0)(�̂ � �̂(0)

!)

= arg

(
min
�̂

1

2

�
(ŶN � �N �̂)

TR�1
E (ŶN � �N �̂)

�
+ (�̂ � �̂(0))TP�1(0)(�̂ � �̂(0))

)
(7.63)

Solving the above least squares problem, we obtain

�̂MAP
N =

�
�T
NR

�1
E �N + P�1(0)

��1 �
�T
NR

�1
E ŶN + P�1(0)�̂(0)

�
(7.64)

Using the Matrix Inversion Lemma, one can rewrite the above as

�̂MAP
N = �̂(0) + P (0)�T

N

�
�T
NP (0)�N + RE

��1 �
ŶN � �N �̂(0)

�
(7.65)

We make the following observations:

� The above indicates that, as long as P (0) is chosen as a nonsingular
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matrix and the persistent excitation condition is satis�ed, �̂MAP
N

converges to �̂LSN as N !1. Hence, all the asymptotic properties of

the least squares identi�cation apply to the above method as well.

� If P (0) is chosen as a singular matrix, the estimate of � may be biased

since the null space of P (0) represents the parameter subspace

corresponding to zero update gain.

� From (7.63), we see that specifying the initial parameter covariance

matrix P (0) to be other than 1I is equivalent to penalizing the

deviation from the initial parameter guess through weighting matrix

P�1(0) in the least squares framework. The standard least squares

solution is interpreted in the Bayesian framework as the MAP solution

corresponding to a uniform initial parameter distribution (i.e.,

P (0) =1I).

Utilizing prior knowledge in the above framework can help us obtain a

smoother and more realistic impulse response. In Section ??, we suggested

using a diagonal weighting matrix to penalize the magnitudes of the

impulse response coe�cients so that a smoother step response can be

obtained. We now see that this is equivalent to specifying the initial

parameter covariance as a diagonal matrix (i.e., the inverse of the weighting

matrix) in the Bayesian framework. The statistical interpretation provides a

formal justi�cation for this practice and a systematic way to choose the

weighting matrix (possibly as a nondiagonal matrix).

(7.65) can be written in the following recursive form:

�̂(k) = �̂(k � 1) +K(k)
�
y(k)� �T (k)�̂(k � 1)

�

K(k) = P (k�1)�(k)
1+�T (k)P (k�1)�(k)

P (k) = P (k � 1)� P (k�1)�(k)�T (k)P (k�1)
1+�T (k)P (k�1)�(k)

(7.66)

where �̂(k) represents �̂MAP
k or E f�jYkg and
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P (k) = E
�
(� � �̂(k))(� � �̂(k))T jYk

�
. The above formula is easily derived

by formulating the problem as a special case of state estimation and

applying the Kalman �ltering.

One could generalize the above to the time-varying parameters by using the

following system model for parameter variation:

�(k) = �(k � 1) + w(k)

y(k) = �T (k)�(k) + �(k)
(7.67)

where w(k) is white noise. This way, the parameter vector �(k) can be

assumed to be time-varying in a random walk fashion. One may also model

w(k) and �(k) as nonwhite signals by further augmenting the state vector

as described earlier

We will demonstrate an application of the Bayesian approach to the

impulse response coe�cient identi�cation through the following example.

Example:

In practice, it may be more appropriate to assume (in prior to the

identi�cation) the derivatives of the impulse response as zero-mean random

variables of Gaussian distribution and specify the covariance of the

derivative of the impulse response coe�cients. In other words, one may

specify

E

(
dh

dt t=i�Ts

)
� E

(
hi � hi�1

Ts

)
= 0; 1 � i � n (7.68)

E

8<
:
 
dh

dt t=i�Ts

!29=
; � E

8<
:
 
hi � hi�1

Ts

!29=
; =

�i
T 2
s

(7.69)

In this case, P (t0) (the covariance for �) takes the following form:
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P (t0) =

2
6666666666664

1 0 � � � � � � 0

�1 1 0 � � � 0

0 . . . . . . . . . 0
... . . . . . . . . . ...

0 � � � � � � �1 1

3
7777777777775

�1 26666666666664

�1

�2
. . .

. . .

�n

3
7777777777775

0
BBBBBBBBBBBBB@

2
6666666666664

1 0 � � � � � � 0

�1 1 0 � � � 0

0 . . . . . . . . . 0
... . . . . . . . . . ...

0 � � � � � � �1 1

3
7777777777775

T
1
CCCCCCCCCCCCCA

�1

(7.70)

Note that the above is translated as penalizing the 2-norm of the di�erence

between two successive impulse response coe�cients in the least squares

identi�cation method. It is straightforward to extend the above concepts

and model the second order derivatives of the impulse response as normally

distributed zero-mean random variables.

(Comment: ADD NUMERICAL EXAMPLE HERE!!!)

7.2.4 OTHER METHODS

There are other methods for estimating parameters in the literature.

Among them, a method that stands out is the instrumental variable (IV)

method. The basic idea behind this method is that, in order for a model to

be good, the prediction error must show little or no correlation with past

data. If they show signi�cant correlation, it implies that there is

information left over in the past data not utilized by the predictor.

In the IV method, a set of variables called \instruments" (denoted by

vector � hereafter) must be de�ned �rst. � contains some transformations of

past data (y(k � 1); � � � ; y(0); u(k � 1); � � � ; u(0)). Then, � is determined

from the following relation:

1

N

NX
k=1

�(k)epred(k; �) = 0 (7.71)
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�(k) is typically chosen to be of same dimension as the parameter vector �.

This way, one obtains the same number of equations as unknowns.

Sometimes, � is chosen to be of higher dimension. Then, � can be

determined by minimizing some norm of 1
N

PN
k=1 �(k)epred(k; �). Filtered

epred can be used as well in the above. The success of the method obviously

depends on the choice of instruments. See Ljung (1987) for guidelines on

how to choose them. If �(k) is chosen as �(k), one obtains the same

estimate as the least squares estimate. It is also possible to choose � that

contains parameters. This leads to pseudo-linear regression.

Other variations to the least squares regression is the so called biased

regression methods in which the regression is restricted to a subspace of the

parameter space. The subspace is not chosen a priori, but is formed by

incrementally adding on a one-dimensional space chosen to maximize the

covariance of data � (as in the Principal Component Regression) or to

maximize the covariance between � and y (as in the Partial Least Squares).

These methods are designed to reduce the variance (esp. when the data do

not show adequate excitation of the whole parameter space) at the expense

of bias. In the Bayesian estimation setting, this can be interpreted as

choosing a singular initial covariance matrix P (0). However, the singular

directions are determined on the basis of data rather than prior knowledge.

7.3 NONPARAMETRIC IDENTIFICATION

METHODS

When one has little prior knowledge about the system, nonparametric

identi�cation which assumes very little about the underlying system is an

alternative. Nonparametric model structures include frequency response

models, impulse response models, etc.. These model structures intrinsically

have no �nite-dimensional parameter representations. In reality, however,
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the dividing line between the parametric identi�cation and the

nonparametric identi�cation is somewhat blurred: In nonparametric

identi�cation, some assumptions are always made about the system

structure (e.g., a �nite length impulse response, smoothness of the

frequency response) to obtain a well-posed estimation problem. In addition,

in parametric identi�cation, a proper choice of model order is often

determined by examining the residuals from �tting models of various orders.

7.3.1 FREQUENCY RESPONSE IDENTIFICATION

Dynamics of a general linear system can be represented by the system's

frequency response, which is de�ned through amplitude ratio and phase

angle at each frequency. The frequency response information is conveniently

represented as a complex function of ! whose modulus and argument de�ne

the amplitude ratio and the phase angle respectively. Such a function can

be easily derived from the systems transfer function G(q) by replacing q

with ej!. Hence, the amplitude ratio and phase angle of the system at each

frequency is related to the transfer function parameters through the

following relations:

A:R:(!) = jG(ej!)j =
q
RefG(ej!)g2 + ImfG(ej!)g2 (7.72)

P:A:(!) = jG(ej!)j = tan�1
2
4ImfG(ej!)g
RefG(ej!)g

3
5 (7.73)

Since G(ej!) (0 � ! � � for system with sample time of 1 ) de�nes system

dynamics completely, one approach to system identi�cation is to identify

G(ej!) directly. This belongs to the category of nonparametric identi�cation

as frequency response is not parametrized by a �nite-dimensional parameter

vector (there are in�nite number of frequency points).
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7.3.1.1 Frequency Response Computation

The most immediate way to identify the frequency response is through a

sine-wave testing, where sinusoidal perturbations are made directly to

system input at di�erent frequencies. Although conceptually

straightforward, this method is of limited value in practice since (1)

sinusoidal perturbations are di�cult to make in practice, and (2) each

experiment gives frequency response at only a single frequency.

A more practical approach is to use the results from the Fourier analysis.

From the z-domain input / output relationship, it is immediate that, for

system y(k) = G(q)u(k),

G(ej!) =
Y (!)

U(!)
(7.74)

where

Y (!) =
1X
k=1

y(k)e�j!k (7.75)

U(!) =
1X
k=1

u(k)e�j!k (7.76)

Hence, by dividing the Fourier transform of the output data with that of

the input data one can compute the system's frequency response. What

complicates the frequency response identi�cation in practice is that one

only has �nite length data. In addition, output data are corrupted by noise

and disturbances.

Let us assume that the underlying system is represented by

y(k) = G(q)u(k) + e(k) (7.77)

where e(k) is a zero-mean stationary sequence and collectively describes the
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e�ect of noise and disturbance. We de�ne

YN(!)
�=

1p
N

NX
k=1

y(k)e�j!k (7.78)

UN(!)
�=

1p
N

NX
k=1

u(k)e�j!k (7.79)

Then,

GN(!)
�=
YN(!)

UN(!)
= G(ej!) +

RN(!)

UN(!)
+
EN(!)

UN(!)
(7.80)

where jRN(!)j = c1p
N
for some c1 (Ljung, 1987). GN(!) computed as above

using N data points is an estimate of the true system frequency response

G(ej!) and will be referred to as the \Empirical Transfer Function Estimate

(ETFE)."

7.3.1.2 Statistical Properties of the ETFE

Let us take expectation of (7.80):

EfGN(!)g = E

8<
:G(ej!) +

RN(!)

UN(!)
+
EN(!)

UN(!)

9=
; = G(ej!) +

RN(!)

UN(!)
(7.81)

We can also compute the variance as

E
n�
GN(!)�G(ej!)

� �
GN(!)�G(e�j!)

�o
=

�e + �N
jUN(!)j2 (7.82)

where �N � c2
N
(Ljung, 1987).

The implications of the above are as follows:

� Since the second term of the RHS of (7.81) decays as 1p
N
, GN (!) is an

asymptotically unbiased estimate of G(ej!).

� If u(k) is a periodic signal with period of N , jUN(!)j is nonzero only at
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N frequency points (at ! = 2��k
N
; k = 0; � � � ; N � 1). This means that

the ETFE is de�ned only at the N frequency points. jUN(!)j at these
frequency points keeps growing larger as N !1, and from (7.82), we

see that the variance goes to zero.

� If u(k) is a randomly generated signal, as N increases,the number of

frequency points at which the ETFE can be computed also increases.

However, jUN(!)j2 is a function that 
uctuates around the spectrum of

u(k) and therefore does not increase with data. From (7.82), we

conclude that the variance does not decay to zero. This is

characteristic of any nonparameteric identi�cation where, roughly

speaking, one is trying to estimate in�nite number of parameters.

A practical implication of the last comment is that the estimate can be very

sensitive to noise in the data (no matter how many data points are used).

Hence, some smoothing is needed. The following are some simple smoothing

methods:

� Select a �nite number of frequency points, !1; � � �!N between 0 and �.

Assume that G(ej!) is constant over !i� �! � ! � !i+ �!. Hence, the

EFTE (GN(!)) obtained within this window are averaged, for instance,

according to the signal-to-noise ratio �e
jUN(!)j2 . Since the number of

frequency response parameters become �nite under the assumption, the

variance decays to zero as 1=N . However, the assumption leads to bias.

� A generalization of the above is to use the weighting function

Ws(� � !) for smoothing. The ETFE is smoothed according to

Gs
N(!) =

R �
��Ws(� � !)GN(!)

jUN(�)j2
�e(!)

d�
R �
��Ws(� � !) jUN(�)j

2

�e(!)
d�

(7.83)

Ws is a function that is centered around zero and is symmetric. It

usually includes a parameter that determines the width of the
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smoothing window and therefore the trade-o� between bias and

variance. Larger window reduces variance, but increases bias and vice

versa. For typical choices of Ws, see Table 6.1 of Ljung (1987). Again,

the variance can be shown to decay as 1=N under a nonzero smoothing

window.

7.3.2 IMPULSE RESPONSE IDENTIFICATION

Impulse response identi�cation is another form of nonparametric

identi�cation, that is commonly used in practice. Suppose the underlying

system is described by convolution model

y(k) =
1X
i=1

Hiu(k � i) + ek (7.84)

Now post-multiply uT (k � �) to the above equation to obtain

y(k)uT (k � �) =
1X
i=1

Hiu(k � i)uT (k � �) + e(k)uT (k � �) (7.85)

Summing up the data from k = 1 to k = N ,

0
@ 1

N

NX
k=1

y(k)uT (k � �)

1
A =

1X
i=1

Hi

0
@ 1

N

NX
k=1

u(k � i)uT (k � �)

1
A+

0
@ 1

N

NX
k=1

e(k)uT (k � �)

1
A

(7.86)

Assuming the input had remained at the steady-state value (i.e., u(k) = 0

for k � 0), the above can be represented by

Ryu(�) =
1X
i=1

HiRuu(� � i) +Reu(�) (7.87)

where

Ryu(�) =
1

N

NX
k=1

y(k)uT (k � �) (7.88)
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Ruu(�) =
1

N

NX
k=1

u(k)uT (k � �) (7.89)

Reu(�) =
1

N

NX
k=1

e(k)uT (k � �) (7.90)

The above equation can also be derived from a statistical argument. More

speci�cally, we can take expectation of (7.87) to obtain

Efy(k)uT(k� �)g =
1X
i=1

HiEfu(k� i)uT (k� �)g+Efe(k)uT (k� �)g (7.91)

Assuming fu(k)g and fe(k)g are stationary sequences, Ruu, Ryu and Reu are

estimates of the expectations based on N data points.

Now, let us assume that fu(k)g is a zero-mean stationary sequence that is

uncorrelated with fe(k)g, which is also stationary (or fe(k)g is a zero-mean

stationary sequence uncorrelated with fu(k)g). Then, Reu(�)! 0 as

N !1. Let us also assume that Hi = 0 for i > n. An appropriate choice

of n can be determined by examining Ryu(�) under a white noise

perturbation. When the input perturbation signal is white, Ruu(i) = 0

except i = 0. From the above, it is clear that Ryu(�) =) if H� = 0. Hence,

one can choose n where Ryu � 0 for � > n.

With these assumptions, as N !1, we can write (7.87) as

�
Ryu(1) Ryu(2) � � � Ryu(n)

�
(7.92)

�
�
H1 H2 � � � Hn

�
2
666666664

Ruu(0) Ruu(1) � � � Ruu(n� 1)

Ruu(�1) Ruu(0) � � � Ruu(n� 1)
... . . . . . . ...

Ruu(�n+ 1) Ruu(�n+ 2) � � � Ruu(0)

3
777777775
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Taking transpose of the above equation and rearranging it gives

2
666666664

HT
1

HT
2
...

HT
n

3
777777775
�

2
666666664

Ruu(0) Ruu(1) � � � Ruu(n� 1)

Ruu(�1) Ruu(0) � � � Ruu(n� 2)
... . . . . . . ...

Ruu(�n+ 1) Ruu(�n+ 2) � � � Ruu(0)

3
777777775

�1 2
666666664

RT
yu(1)

RT
yu(2)
...

RT
yu(n)

3
777777775

(7.93)

With �nite-length data, parameter variance can be signi�cant. However,

because we limited the number of impulse response coe�cients to n by

assuming Hi = 0; i > n, the variance decays as 1=N (assuming the matrix �

remains nonsingular). However, some bias results because of the truncation.

Again, the choice of n determines the trade-o� between the variance and

the bias.

Note that (7.93) gives the same estimate as the least squares identi�cation.

In the case that fe(k)g is nonstationary due to integrating type
disturbances, di�erenced data, �y(k) and �u(k), can be used as before.

7.3.3 SUBSPACE IDENTIFICATION

There applications where it is necessary to embed into the model

disturbance correlations among di�erent outputs. In this case, MIMO

identi�cation (rather than SISO or MISO identi�cation) is needed. Transfer

function models are di�cult to work with in this context, since it gives rise

to a numerically ill-conditioned, nonlinear estimation problem with possible

local minima. In addition, signi�cant prior knowledge (e.g., the system

order, the observability index) is needed to obtain a model

parameterization. An alternative is to identify a state-space model directly,

using a subspace identi�cation method. Di�erent subspace identi�cation

algorithms available in the literature share the same basic concept, which
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