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will be presented here.

Assume that the underlying system is given by

x(k + 1) = Ax(k) +Bu(k) + "1(k)

y(k) = Cx(k) + "2(k)
(7.94)

where

2
64 "1(k)
"2(k)

3
75 is a zero-mean, i.i.d. vector sequence.

The system is assumed to be controllable (from [uT "T1 ]
T ) and observable.

In addition, the stochastic part of the system is assumed to be stationary.

The objective is to identify from input-output data a state-space model

~x(k + 1) = ~A~x(k) + ~Bu(k) + ~"1(k)

y(k) = ~C~x(k) + ~"2(k)
(7.95)

that is equal to (7.94) in an input-output sense. We will assume for the sake

of simplicity that the input sequence u(k) used in the identi�cation is a

white noise sequence.

Consider the following optimal multi-step prediction equation (of �nite

memory):
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(7.96)
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=
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(7.97)

�n > n where n is the system order. y(k + ijk) represents the optimal

prediction of y(k + i) on the basis of data y(k � �n+ 1); � � � ; y(k) and

u(k � �n+ 1); � � � ; u(k + �n� 1). e(k + ijk) denotes the respective prediction

error. L1 2 R
ny��n�ny��n, L2 2 R

ny��n�nu��n and L3 2 R
ny��n�nu�(�n�1) are functions

of system matrices.

The optimal prediction error e(k + ijk); i � 1 � �n is zero-mean and

uncorrelated with y(k � �n+ 1); � � � ; y(k) and u(k � �n+ 1); � � � ; u(k + �n� 1).

Hence, unbiased, consistent esimates of L1; L2 and L3 can be obtained by

applying linear least squares identi�cation. L1; L2 and L3 are related to the

system matrices and covariance matrices in a complex manner, and

extracting the system matrices directly from L1; L2 and L3 would involve a

very di�cult nonlinear optimization. It also requires a special

parameterization of model matrices in order to prevent a loss of

identi�ability. Clearly, an alternative way to generate the system matrices is

desirable.

We can rewrite the optimal predictions in (7.96) in terms of a Kalman �lter

estimate as follows:
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(7.98)

x(k + 1jk) represents an estimate of x(k + 1) that is obtained by running a

nonsteady-state Kalman �lter started with an initial estimate of
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x(k � �n+ 1jk � �n) = 0 and initial covariance matrix corresponding to the

open-loop, steady-state covariance of x.1 Comparing (7.98) with (7.96), one

can conclude that
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Hence, the extended observability matrix and
�
L1 L2

�
have the same

image space and examining the rank of the latter gives the system order.

In constructing a state-space model from input-output data, there clearly

exists some degrees-of-freedom since the basis for the state vector can be

chosen arbitrarily without a�ecting the input-output relation. This means

that the extended observability matrix for the identi�ed model (7.95)

(denoted as �o from this point on) can be any matrix (of dimension

(�n � ny)� n) that has the same image space as
�
L1 L2

�
. Let the SVD of�

L1 L2

�
be represented as follows:
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75 (7.100)

We choose �o = U1�
1=2
1 . This de�nes the basis for the state vector. Let ~x

denote x written in terms of the above-de�ned basis. We then express the

1This interpretation does not hold in the case of time-correlated input sequence since future inputs can
then contribute to the estimation of past outputs. However, a similar interpretation can be developed and
the theory extends straightforwardly with some modi�cations.
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system equation in terms of the new basis as follows:

~x(k + 1) = ~A~x(k) + ~Bu(k) + ~"1(k) (7.101)

y(k) = ~C~x(k) + ~"2(k) (7.102)

The form of the state-space model that will actually be identi�ed is the

following Kalman �lter equation for the above system:

~x(k + 2jk + 1) = ~A~x(k + 1jk) + ~Bu(k + 1) +K(k + 1)�(k + 1)| {z }
~"1(k+1)

(7.103)

y(k + 1) = ~C~x(k + 1jk) + �(k + 1)| {z }
~"2(k+1)

(7.104)

~x(k + 1jk) and ~x(k + 2jk + 1) are two consecutive estimates generated from

a nonsteady-state Kalman �lter and K(k + 1) is the Kalman �lter gain. �

represents the innovation term (note �(k + 1) = y(k + 1)� ~x(k + 1jk)).

Now that the identi�cation problem is well-de�ned, we discuss the

construction of system matrices. In order to identify the system matrices

using the relations in (7.103){(7.104), we need data for the Kalman �lter

estimates ~x(k + 1jk) and ~x(k + 2jk + 1). Let us de�ne ~x(k + 2jk + 1) and

~x(k + 1jk) as the estimates from the nonsteady-state Kalman �lter for

system (7.101), started with the initial estimate of ~x(k � �n+ 1jk � �n) = 0

and initial covariance given by the open-loop, steady-state covariance of ~x.

Then, according to (7.99),
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�
L1 L2

�

2
6666666666666664

y(k � �n+ 1)
...

y(k)

u(k � �n+ 1)
...

u(k)

3
7777777777777775

(7.105)
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Hence, the data for ~x(k + 1jk) can be found through the following formula:

~x(k + 1jk) = �yo

�
L1 L2

�
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(7.106)

It is important to recognize that the data for ~x(k + 2jk + 1) cannot be

obtained by time-shifting the data for ~x(k+1jk), since this will result in the

Kalman �lter estimate for ~x(k + 2) with a di�erent starting estimate of

x(k � �n+ 2jk � �n+ 1) = 0. Instead, one must start from the prediction

equation below and follow the same procedure as before:
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Once the data for�
yT (k + 2jk + 1) yT (k + 3jk + 1) � � � yT (k + �njk + 1)

�T
are obtained by

using the estimates, the data for ~x(k + 2jk + 1) can be derived by

multiplying them with the pseduo-inverse of �̂o (which is �o with the last ny

rows eliminated).

Once the data for ~x(k + 1jk) and ~x(k + 2jk + 1) are generated, one can �nd

the system matrices by applying least squares identi�cation to (7.103).

Since �(k+1) is a zero-mean sequence that is independent of ~x(k+1jk) and

u(k + 1), the least squares method gives unbiased, consistent estimates of
~A; ~B and ~C. The covariance matrix for [~"T1 ~"T2 ]

T can also be computed from

the residual sequence.
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7.3.3.1 Properties and Issues

The subspace identi�cation method we just described has the following

properties (Comment: see Van Overschee and De Moor REF for proofs and

discussions):

� The resulting model is asymptotically unbiased.

� The estimates for the covariance matrices are biased, however, due to

the fact that (7.103) is a nonsteady-state Kalman �lter. The

approximation error diminishes as �n!1.

Strengths of the method are that it requires only numerically stable,

noniterative linear algebra operations only and that very little prior

knowledge (an upper-bound on the system order) is needed to start up the

algorithm. However, there are some drawbacks as well. Although the

method yields an asymptotically unbiased model, very little can be said

about the model quality obtained with �nite data. In practice, one must

always work with �nite-length data sets. In addition, various nonideal

factors like nonlinearity and nonstationarity make the residual sequence

e(k + ijk) in (7.96) become correlated with the regression data. Because of

these reasons, L1, L2 obtained from the least squares identi�cation (which

are critical for determining the system order and generating data for the

Kalman �lter estimates) may have signi�cant variance. Although expected

errors in the estimates of these matrices can be quanti�ed, it is di�cult to

say how these errors a�ect the �nal model quality (measured in terms of

prediction error, frequency response error, etc.). One implication is that, in

general, one needs a large amount of data in order to guarantee much

success with these algorithms (which is only natural since these algorithms

use very little prior knowledge). Another implication is that the above does

not replace the traditional parametric identi�cation, but complements it.
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For instance, it has been suggested that the subspace methods be used to

provide a starting estimate for the prediction error minimization.

Another related issue is that, becuase of the variance, the SVD of
�
L1 L2

�

is likely to show many more nonzero singular values than the intrinsic

system order. In order not to over�t the data, one has to limit the system

order by eliminating the negligible singular values in forming the �o matrix.

In the context of model reduction, this is along the same line as the Hankel

norm reduction. An alternative for deciding the system order and the basis

for the states is to use the SVD of the matrix
�
L1 L2

�
Y , where Y is the

matrix whose columns contain the data for�
y(k � �n+ 1)T � � � y(k)T u(k � �n+ 1)T � � � u(k � 1)T

�T
. In this case,

the singluar values indicate how much of the output data are explained by

di�erent linear modes (in the 2-norm sense). In the context of model

reduction, this corresponds to a frequency-weighting with the input

spectrum (for the deterministic part). This step of determining the model

order and basis is somewhat subjective, but is often critical.

Finally, the requirement that the stochastic part of the system be stationary

should not be overlooked. If the system has integrating type disturbances,

one can di�erence the input output data before applying the algorithm.

Further low-pass �ltering may be necessary not to over-emphasize the high

frequency �tting (recall the discussion on the frequency-domain bias

distribution).
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