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Chapter 3

BASICS OF OPTIMIZATION

3.1 INTRODUCTION

Ingredients of Optimization

� Decision variables (x 2 Rn): undetermined parameters

� Cost function (f : Rn ! R): the measure of preference

� Constraints (h(x) = 0, g(x) � 0): equalities and inequalities

that the decision variables must satisfy

min
x2Rn

f(x)

h(x) = 0

g(x) � 0
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Example

Consider control problem associated with the linear system

xk+1 = Axk +Buk

Decision variables: xk, uk, k = 0; 1; � � � ; N

Cost function:

� xk is preferred to be close to the origin, the desired steady state.

� Large control action is not desirable.

+

One possible measure of good control is

NX

i=1
xTi xi +

N�1X

i=0
uTi ui

Constraints: decision variables, xk+1, uk, k = 0; 1; � � � ; N , must

satisfy the dynamic constraints

xk+1 = Axk +Buk

+

min
uk;xk

NX

i=1
xTi xi +

N�1X

i=0
uTi ui

subject to

xk+1 = Axk +Buk
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Terminologies

Let


 = fx 2 Rn : h(x) = 0; g(x) � 0g

Feasible point: any x 2 


Local minimum: x� 2 
 such that 9� > 0 for which f(x�) � f(x)

for all x 2 
 \ fx 2 Rn : kx� x�k < �g.

Global minimum: x� 2 
 such that f(x�) � f(x) for all x 2 
.
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3.2 UNCONSTRAINED OPTIMIZATION

PROBLEMS

Necessary Condition of Optimality

for Unconstrained Optimization Problems

From calculus, the extrema x� of a function f from R to R must

satisfy
df

dx
(x�) = 0

+

The minima for 1-D unconstrained problem:

min
x2R

f(x)

must satisfy
df

dx
(x�) = 0

that is only necessary.
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Necessary Condition of Optimality

for Unconstrained Optimization Problems (Continued)

In general, the optima for n-D unconstrained problem:

min
x2Rn

f(x)

satisfy the following necessary condition of optimality

rf(x�) = 0

(n equations and n unknowns)

Example: Consider

min
x2Rn

1

2
xTHx + gTx

The necessary condition of optimality for this problem is

[rf(x�)]T = Hx� + g = 0

If H is invertible,

x� = �H�1g
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Steepest Descent Methods

for Unconstrained Nonlinear Programs

The meaning of gradient rf(x): the steepest ascent direction at

the given point.

Main idea: search the minimum in the steepest descnt direction

xk+1 = xk � �krf(xk)

where

�k = argmin�f(xk � �rf(xk))
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Newton's Method

for Unconstrained Nonlinear Programs

Main idea:

1. Approximate the object function by quadradic function

2. Solve the resulting quadratic problem

Quadratic approximation:

f(x) � f(xk) +rf(xk)(x� xk) +
1

2
(x� xk)

T
r

2f(xk)(x� xk)

Exact solution of the quadratic program:

xk+1 = xk � [r2f(xk)]
�1
rf(xk)

T


