3.4 CONVEX OPTIMIZATION

Convexity

Convex set: $C \subset \mathbf{R}^n$ is convex if

$$
x, y \in C, \quad \lambda \in [0, 1] \quad \Rightarrow \quad \lambda x + (1 - \lambda)y \in C
$$

Convex Functions: $f : \mathbf{R}^n \to \mathbf{R}$ is convex if

$$
x, y \in \mathbf{R}^{n}, \quad \lambda \in [0, 1]
$$

$$
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)
$$

Convexity (Continued)

Notice that $\{x : g(x) \le 0\}$ is convex if g is convex.

Theorem: If f and g are convex any local optimum is globally optimal.

Linear Programs

$$
\min_{x \in \mathbf{R}^n} a^T x
$$

subject to

 $Bx \leq b$

Linear program is a convex program.

Feasible basic solution: feasible solution that satisfies n of the constraints as equalities.

Fact: If an optimal solution exists, there exists a feasible basic solution that is optimal.

Quadratic Programs

$$
\min_{x \in \mathbf{R}^n} \frac{1}{2} x^T H x + g^T x
$$

subject to

 $Ax \leq b$

Quadratic program is convex if H is positive semi-definite.

ALGORITMS FOR CONSTRAINED 3.5 OPTIMIZATION PROBLEMS

Algorithms for Linear Program

Simplex Method

Motivation: There always exists a basic optimal solution.

Main Idea:

- Find a basic solution.
- \bullet Find another basic solution with lower cost function value.
- \bullet Continue until another basic solution with lower cost function value cannot be found.

Simplex algorithm always finds a basic optimal solution.

Algorithms for Linear Program (Continued)

Interior Point Method

Main Idea:

• Define barrier function:

$$
B=-\sum_{i=1}^m\frac{1}{c_i^Tx-b_i}
$$

Form the unconstrained problem:

$$
\min_x a^T x + \frac{1}{K} B(x)
$$

- \bullet Solve the unconstrained problem using Newton method.
- \bullet Increase K and solve the unconstrained problem again until the solution converges.
- \bullet Kemarkably, problems seem to converge between 5 to 50 $\,$ Newton steps regerdless of the problem size.
- \bullet Can exploit structures of the problem (e.g. sparsity) to reduce computation time per Newton step.
- \bullet Can be extended to general nonlinear convex problems such as quadratic programs.

Algorithms for Quadratic Program

Active Set Method

Main Idea:

- \bullet Determine the active constraints and set them as equality constraints.
- \bullet Solve the resulting problem.
- \bullet Check the Kuhn-Tucker condition that is also suffucuent for QP.
- \bullet If Kuhn-Tucker condition is not satisfied, try another set of active constraints.

Interior Point Method

 \bullet The main idea of interior point method for QP is the same as that for LP.

Generalized Reduced Gradient Method for Constrained Nonlinear Programs

Main idea:

- 1. Linearize the equality constraints that are possibly obtained adding slack variables
- 2. Solve the resulting linear equations for m variables
- 3. Apply the steepest descent method with respect to $n m$ variables

Linearization of Constraints:

$$
\nabla_y h(y, z) dy + \lambda^T \nabla_z h(y, z) dz = 0
$$

$$
\Downarrow
$$

$$
dy = -[\nabla_y h(y, z)]^{-1} \lambda^T \nabla_z h(y, z) dz
$$

Generalized Reduced Gradient of Objective Function:

$$
df(y, z) = \nabla_y f(y, z) dy + \lambda^T \nabla_z f(y, z) dz
$$

$$
= [\lambda^T \nabla_z f(y, z) - \nabla_y f(y, z) [\nabla_y h(y, z)]^{-1} \lambda^T \nabla_z h(y, z)] dz
$$

$$
\Downarrow
$$

$$
r = \frac{df}{dz} = \lambda^T \nabla_z f(y, z) - \nabla_y f(y, z) [\nabla_y h(y, z)]^{-1} \lambda^T \nabla_z h(y, z)
$$

Penalty Method for Constrained Nonlinear Programs

Main idea: Instead of forcing the constraints, penalize the violation of the constraints in the objective.

$$
\min_x f(x) - c_k g(x) = (P_k)
$$

where $c_k > 0$.

Theorem: Let x_k be the optimal solution of (P_k) . Then as $c_k \to \infty$, $x_k \rightarrow x^*$.

Successive QP Method

for Constrained Nonlinear Programs

Main idea:

- 1. Approximate the ob ject function by quadradic function and constraints linear function.
- 2. Solve the resulting quadratic problem

Approximate Quadratic Program:

$$
\min \nabla f dx + \frac{1}{2} dx^T \nabla^2 f dx
$$

sub ject to

$$
g(x) + \nabla g(x) dx \le 0
$$

Nonconvex Programs

The aforementioned optimization algorithms indentify only one local optimum.

However, a nonconvex optimization problem may have a number of local optima.

 \downarrow

Algorithms that indentifies a global optimum are necessary

A Global Optimization Algorithm for Noconvex Programs

Branch and bound type global optimization algorithm:

- \bullet Branching Step: split the box at the optimum
- \bullet Bounding Step: find the box where the optimum is lowest $\hspace{0.1mm}$