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4.2.5 CONDITIONAL PROBABILITY DENSITY: SCALAR

CASE

When two random variables are related, the probability density of a random

variable changes when the other random variable takes on a particular value.

The probability density of a random variable when one or more

other random variables are �xed is called conditional probability

density.

This concept is important in stochastic estimation as it can be used to

develop estimates of unknown variables based on readings of other related

variables.

Let x and y be random variables. Suppose xand y have joint probability

density P(�; �;x; y). One may then ask what the probability density of x is

given a particular value of y (say y = �). Formally, this is called

\conditional density function" of x given y and denoted as P(�j�;xjy).
P(�j�;xjy) is computed as

P(�j�;xjy) =
lim�!0

R �+�
��� P(�; ��;x; y)d��Z

1

�1

Z �+�

���
P(�; ��;x; y)d��d�| {z }

normalization factor

(4.51)

=
P(�; �;x; y)R

1

�1
P(�; �;x; y)d� (4.52)

=
P(�; �;x; y)
P(�; y) (4.53)
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Note:

� The above means0
B@ Conditional Density

of x given y

1
CA =

Joint Density of x and y

Marginal Density of y
(4.54)

This should be quite intuitive.

� Due to the normalization,

Z
1

�1

P(�j�;xjy) d� = 1 (4.55)

which is what we want for a density function.

�
P(�j�;xjy) = P(�; x) (4.56)

if and only if

P(�; �;x; y) = P(�; x)P(�; y) (4.57)

This means that the conditional density is same as the marginal

density when and only when x and y are independent.

We are interested in the conditional density, because often some of the

random variables are measured while others are not. For a particular trial,

if x is not measurable, but y is, we are intersted in knowing P(�j�;xjy) for
estimation of x.

Finally, note the distinctions among di�erent density functions:
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� P(�; �;x; y): Joint Probability Density of x and y

represents the probability density of x = � and y = � simultaneously.

Z b2

a2

Z b1

a1
P(�; �;x; y)d�d� = Prfa1 < x � b1 and a2 < y � b2g (4.58)

� P(�;x): Marginal Probability Density of x

represents the probability density of x = � NOT knowing what y is.

P(�; x) =
Z
1

�1

P(�; �;x; y)d� (4.59)

� P(�; y): Marginal Probability Density of y

represents the probability density of y = � NOT knowing what x is.

P(�; y) =
Z
1

�1

P(�; �;x; y)d� (4.60)

� P(�j�;xjy): Conditional Probability Density of x given y

represents the probability density of x when y = �.

P(�j�;xjy) = P(�; �;x; y)
P(�; y) (4.61)

� P(�j�; yjx): Conditional Probability Density of y given x

represents the probability density of y when x = �.

P(�j�; yjx) = P(�; �;x; y)
P(�; x) (4.62)

Baye's Rule:

Note that

P(�j�;xjy) =
P(�; �;x; y)
P(�; y) (4.63)

P(�j�; yjx) =
P(�; �;x; y)
P(�; x) (4.64)
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Hence, we arrive at

P(�j�;xjy) = P(�j�; yjx)P(�; x)
P(�; y) (4.65)

The above is known as the Baye's Rule. It essentially says

(Cond. Prob. of x given y) � (Marg. Prob. of y) (4.66)

= (Cond. Prob. of y given x)� (Marg. Prob. of x) (4.67)

Baye's Rule is useful, since in many cases, we are trying to compute

P(�j�;xjy) and it's di�cult to obtain the expression for it directly, while it

may be easy to write down the expression for P(�j�; yjx).

We can de�ne the concepts of conditional expectation and conditional

covariance using the conditional density. For instance, the conditional

expectation of x given y = � is de�ned as

Efxjyg �=
Z
1

�1

�P(�j�;xjy)d� (4.68)

Conditional variance can be de�ned as

Varfxjyg �= Ef(� �Efxjyg)2g (4.69)

=
Z
1

�1

(� � Efxjyg)2P(�j�;xjy)d� (4.70)

Example: Jointly Normally Distributed or Gaussian Variables

Suppose that x and y have the following joint normal densities

parametrized by m1;m2; �1; �2; �:

P(�; �;x; y) =
1

2��x�y(1� �2)1=2
(4.71)

� exp

8><
>:�

1

2(1� �2)

2
64
 
� � �x

�x

!2
� 2�

(� � �x)(� � �y)

�x�y
+

0
@� � �y

�y

1
A2
3
75
9>=
>;
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Some algebra yields

P(�; �;x; y) =
1q
2��2y

exp

8><
>:�

1

2

0
@� � �y

�y

1
A2
9>=
>;| {z }

marginal density of y

(4.72)

� 1q
2��2x(1� �2)

exp

8>><
>>:�

1

2

0
B@� � �x� ��x�y (� � �y)

�x
p
1� �2

1
CA
2
9>>=
>>;| {z }

conditional density of x

=
1q
2��2x

exp

8<
:�1

2

 
� � �x

�x

!29=
;| {z }

marginal density of x

(4.73)

� 1q
2��2y(1� �2)

exp

8><
>:�

1

2

0
@� � �y � �

�y
�x
(� � �x)

�y
p
1� �2

1
A2
9>=
>;| {z }

conditional density of y

Hence,

P(�j�;xjy) =
1q

2��2x(1� �2)
exp

8>><
>>:�

1

2

0
B@� � �x� ��x�y (� � �y)

�x
p
1� �2

1
CA
2
9>>=
>>;(4.74)

P(�j�; yjx) =
1q

2��2y(1� �2)
exp

8><
>:�

1

2

0
@� � �y � �

�y
�x
(� � �x)

�y
p
1� �2

1
A2
9>=
>;(4.75)

Note that the above conditional densities are normal. For instance,

P(�j�;xjy) is a normal density with mean of �x+ ��x�y (� � �y) and variance of

�2x(1� �2). So,

Efxjyg = �x+ �
�x

�y
(� � �y) (4.76)

= �x+
��x�y

�2y
(� � �y) (4.77)

= Efxg+ Covfx; ygVar�1fyg(� � �y) (4.78)
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Conditional covariance of x given y = � is:

Ef(x�Efxjyg)2jyg = �2x(1� �2) (4.79)

= �2x �
�2x�

2
y�

2

�2y
(4.80)

= �2x � (�x�y�)
1

�2y
(�x�y�) (4.81)

= Varfxg � Covfx; ygVar�1fygCovfy; xg(4.82)

Notice that the conditional distribution becomes a point density as �! 1,

which should be intuitively obvious.

4.2.6 CONDITIONAL PROBABILITY DENSITY: VECTOR

CASE

We can extend the concept of conditional probability distribution to the

vector case similarly as before.

Let x and y be n and m dimensional random vectors respectively. Then, the

conditional density of x given y = [�1; � � � ; �m]T is de�ned as

P(�1; � � � ; �nj�1; � � � ; �m;x1; � � � ; xnjy1; � � � ; ym)
=

P(�1; � � � ; �n; �1; � � � ; �m;x1; � � � ; xn; y1; � � � ; ym)
P(�1; � � � ; �m; y1; � � � ; ym) (4.83)

Baye's Rule can be stated as

P(�1; � � � ; �nj�1; � � � ; �m;x1; � � � ; xnjy1; � � � ; ym) (4.84)

=
P(�1; � � � ; �mj�1; � � � ; �n; y1; � � � ; ymjx1; � � � ; xn)P(�1; � � � ; �n;x1; � � � ; xn)

P(�1; � � � ; �m; y1; � � � ; ym)
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The conditional expectation and covariance matrix can be de�ned similarly:

Efxjyg =
Z
1

�1

� � �
Z
1

�1

2
666664
�1
...

�n

3
777775P(�j�;xjy) d�1; � � � ; d�n (4.85)

Covfxjyg =
Z
1

�1

� � �
Z
1

�1

2
666664
�1 �Efx1jyg

...

�n �Efxnjyg

3
777775

2
666664
�1 � Efx1jyg

...

�n � Efxnjyg

3
777775

T

P(�j�;xjy) d�1; � � � ; d�n

(4.86)

Example: Gaussian or Jointly Normally Distributed Variables

Let x and y be jointly normally distributed random variable vectors of

dimension n and m respectively. Let

z =

2
64 x
y

3
75 (4.87)

The joint distribution takes the form of

P(�; �;x; y) = 1

(2�)
n+m

2 jPzj1=2
exp

(
�1

2
(� � �z)TP�1z (� � �z)

)
(4.88)

where

�z =

2
64 �x

�y

3
75 ; � =

2
64 �

�

3
75 (4.89)

Pz =

2
64 Cov(x) Cov(x; y)

Cov(y; x) Cov(y)

3
75 (4.90)

Then, it can be proven that (see Theorem 2.13 in [Jaz70])

Efxjyg = �x+Cov(x; y)Cov�1(y)(� � �y) (4.91)

Efyjxg = �y + Cov(y; x)Cov�1(x)(� � �x) (4.92)
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and

Covfxjyg �= E
�
(� �Efxjyg) (� � Efxjyg)T

�
(4.93)

= Covfxg � Covfx; ygCov�1fygCovfy; xg (4.94)

Covfyjxg �= E
�
(� � Efyjxg) (� � Efyjxg)T

�
(4.95)

= Covfyg � Covfy; xgCov�1fxgCovfx; yg (4.96)

4.3 STATISTICS

4.3.1 PREDICTION

The �rst problem of statistics is prediction of the outcome of a future trial

given a probabilistic model.

Suppose P(x), the probability density for random variable x, is

given. Predict the outcome of x for a new trial (which is about to

occur).

Note that, unless P(x) is a point distribution, x cannot be predicted exactly.

To do optimal estimation, one must �rst establish a formal criterion. For

example, the most likely value of x is the one that corresponds to the

highest density value:

x̂ = arg
�
max
x
P(x)

�

A more commonly used criterion is the following minimum variance

estimate:

x̂ = arg
�
min
x̂

E
nkx� x̂k22

o�

The solution to the above is x̂ = Efxg.
Exercise: Can you prove the above?
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If a related variable y (from the same trial) is given, then one should use

x̂ = Efxjyg instead.

4.3.2 SAMPLE MEAN AND COVARIANCE,

PROBABILISTIC MODEL

The other problem of statistics is inferring a probabilistic model from

collected data. The simplest of such problems is the following:

We are given the data for random variable x from N trials. These

data are labeled as x(1); � � � ; x(N). Find the probability density

function for x.

Often times, a certain density shape (like normal distribution) is assumed to

make it a well-posed problem. If a normal density is assumed, the following

sample averages can then be used as estimates for the mean and covariance:

�̂x =
1

N

NX
i=1

x(i)

R̂x =
1

N

NX
i=1

x(i)xT(i)

Note that the above estimates are consistent estimates of real mean and

covariance �x and Rx (i.e., they converge to true values as N !1).

A slightly more general problem is:

A random variable vector y is produced according to

y = f(�; u) + x

In the above, x is another random variable vector, u is a known

deterministic vector (which can change from trial to trial) and � is
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an unknown deterministic vector (which is invariant). Given data

for y from N trials, �nd the probability density parameters for x

(e.g., �x, Rx) and the unknown deterministic vector �.

This problem will be discussed later in the regression section.
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