Part IV ADVANCED ISSUES IN MPC

Contents

1	STA	ATE-SPACE MODEL PREDICTIVE CONTROL	3
	1.1	SHORTCOMINGS OF CURRENT INDUSTRIAL MPC PRACTICE	3
	1.2	STATE SPACE MPC	5
	1.3	DISTURBANCE ESTIMATION VIA STATE ESTIMATION	8
	1.4	MPC FORMULATION USING STATE-SPACE MODEL	13
2	NO	NLINEAR AND ADAPTIVE MODEL PREDICTIVE CONTROL	14
	2.1	MOTIVATION	14
	2.2	ISSUES IN NONLINEAR MPC	16
	2.3	LINEARIZATION BASED NONLINEAR MPC	18
	2.4	EXAMPLE: PAPER MACHINE HEADBOX CONTROL	25
	2.5	ADDITIONAL ISSUES	28
	2.6	RECURSIVE PARAMETER ESTIMATION	29
	2.7	ADAPTIVE MPC FORMULATION	30
	2.8	EXAMPLE: BINARY DISTILLATION COLUMN	31
	2.9	POTENTIAL IMPROVEMENTS IN SYSTEM IDENTIFICATION	34

Chapter 1

STATE-SPACE MODEL PREDICTIVE CONTROL

1.1 SHORTCOMINGS OF CURRENT INDUSTRIAL MPC PRACTICE

- Truncated Step Response Model:
 - Many model coefficients have to be stored:

Example) 5 x 5 system with 30 step response coefficients on each gives 750 coefficients.

The problem is much worse for systems with mixed time scale dynamics (e.g. a high-purity distillation column) where sample time needs to be chosen according to the fast time-scale dynamics, but the settling time is determined by the slow time-scale dynamics.

This limits the size of application.

- Unstable systems cannot be handled.
- Truncation error is unavoidable.

• Disturbance estimation:

- Step disturbance is assumed and, thus, drift, ramp, oscillatory disturbances cause poor performance.
- No cross channel update.
- Unmeasured outputs are not updated.

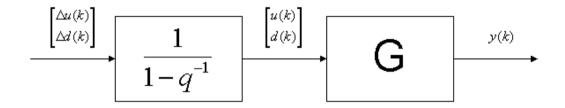
These shortcomings motivate development of

MPC based on a general state-space model.

1.2 STATE SPACE MPC

State Space Plant Model

Consider state space model of the plant obtained from either fundamental ODE's or system identification:



$$x(k+1) = Ax(k) + B_u u(k) + B_d d(k)$$

$$y(k) = Cx(k)$$

 \downarrow differencing

$$\Delta x(k+1) = A\Delta x(k) + B_u \Delta u(k) + B_d \Delta d(k)$$

$$\Delta y(k) = C\Delta x(k)$$

x(k): state

u(k): control input

y(k): measurement output

d(k): measured disturbances

• The number of coefficients is reduced.

Example) For 5 x 5 system with 10 states, only 200 coefficients need to be stored

- For appropriate choice of A, state space model can represent unstable process.
- No truncation error.

Prediction with State Space Plant Model

If we constrain that $\Delta u(k+m|k) = \cdots = \Delta u(k+p-1|k) = 0$,

$$\begin{bmatrix} \tilde{y}(k+1|k) \\ \tilde{y}(k+2|k) \\ \vdots \\ \tilde{y}(k+p|k) \end{bmatrix} = \begin{bmatrix} \Xi\Phi \\ \Xi\Phi^2 \\ \vdots \\ \Xi\Phi^p \end{bmatrix} X(k|k) + \begin{bmatrix} \Xi, d \\ \Xi\Phi, d \\ \vdots \\ \Xi\Phi^{p-1}, d \end{bmatrix} d(k)$$

$$+ \begin{bmatrix} \Xi, u & 0 & \cdots & 0 \\ \Xi\Phi, u & \Xi, u & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \Xi\Phi^{p-1}, u & \Xi\Phi^{p-2}, u & \cdots & \Xi\Phi^{p-m}, u \end{bmatrix} \Delta \mathcal{U}(k)$$

Rewriting the above,

1.3 DISTURBANCE ESTIMATION VIA STATE ESTIMATION

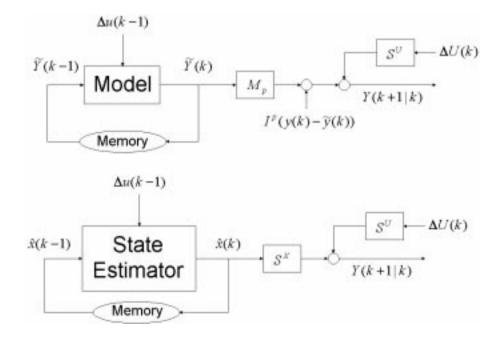
Motivation

In current industrial MPC algorithms,

- models are run open-loop
- feedback is entered into the prediction statically (no memory of the past feedbakc)

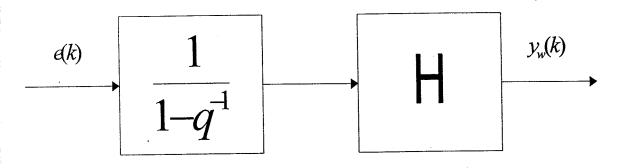
In disturbance estimation via state estimation

- unmeasured disturbance effects are included in the memory (state vector) and update is made directly to the states.
- fuller use of feedback measurement is allowed.



State Space Disturbance Model

State space disturbance model:



$$\Delta x_w(k+1) = A_w \Delta x_w(k) + B_w e(k)$$

$$\Delta y_w(k) = C_w \Delta x_w(k) + D_w e(k)$$