Experimental and Modeling Study of CO₂ Solubility in Aqueous Blended Amine Solutions for Estimating Regeneration Energy of Post Combustion Carbon Capture Process <u>문종호</u>, 이종섭¹, 최봉근, 박영철¹, 전동혁¹, 신헌용², 성현제³, 민병무^{1,†} 충북대학교 화학공학과; ¹ 한국에너지기술연구원; ²서울과학기술대학교; ³한솔EME Newly measured experimental data of CO_2 solubilities in aqueous MEA (primary), DIPA (secondary), MDEA (tertiary), AMP (steric hindrance) and their mixture solutions are provided with thermodynamic models, such as Kent Eisenberg, Deshmukh Mather, and electrolyte NRTL models. The solubility measurements were carried out over a wide temperature range and at various amine concentration conditions with static method. The successive substitution method was introduced for calculating mole fractions of all electrolytes from equilibrium, material and charge balance equations simultaneously. CO_2 partial pressure, liquid phase concentrations for all components including carbamates, pH, and the heats of absorption for all amine concentrations, temperatures, and CO_2 loading conditions could be obtained. Also a simple method to estimate the regeneration energy in amine-based wet scrubbing processes was proposed.