화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.5, 450-455, October, 2012
활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구
Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon
E-mail:
초록
수용액으로부터 유독한 플루오레세인 염료 성분을 제거하는데 있어서 활성탄의 활용가능성을 살펴보았다. 회분식 실험을 통해 입상 활성탄에 대한 플루오레세인 염료의 흡착특성을 초기농도, 접촉시간 및 흡착온도를 변수로 하여 조사하였다. 실험결과는 활성탄이 수용액으로부터 플루오레세인 염료를 고효율로 제거할 수 있는 것으로 나타났다. 흡착평형관계는 298∼318 K의 온도범위에서 Freundlich 등온식이 잘 적용되었다. 흡착동력학적 연구로 부터 플루오레세인 염료의 흡착공정은 유사이차속도식에 잘 맞았으며 유사이차속도상수(k2)는 플루오레세인 염료 초기농도가 높을수록 감소하였다. 흡착자유에너지변화(△G0), 엔탈피변화(△H0), 엔트로피변화(△S0)를 계산하여 본 결과, 표준자유에너지 변화량이 -17.11∼-20.50 kJ/mol로 자발적인 공정임을 알았다. 엔탈피변화량은 33.2 kJ/mol로 양의 값을 나타내어 활성탄에 대한 플루오레세인 염료의 흡착이 흡열반응임을 알 수 있었다.
The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant (k2) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption (△Go), enthalpy (△Ho), and entropy (△So) change were calculated to predict the nature adsorption. The estimated values for △Go were -17.11∼-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for △H0, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.
  1. Kim YM, Dicer Report Topic Review., 9, 1 (2009)
  2. Fineschi V, Monasterolo G, Rosi R, Turillazzi E, Forensic Sci. Int., 100, 137 (1999)
  3. Budavari S, The Merck Index, Merck & Co. Inc., Rahway, 651 (1996)
  4. Qian HQ, Mao HY, Song F, Shi SQ, Zhang HJ, Li HY, He PM, Bao SN, Appl. Surf. Sci., 256(9), 2686 (2010)
  5. Cvetkovic A, Zomerdijk M, Straathof AJJ, Krishna R, van der Wielen LAM, Biotechnol. Bioeng., 87(5), 658 (2004)
  6. Pirillo S, et. al., Quim. Nova., 32, 1239 (2009)
  7. Lee JJ, J. Kor. Soc. Water Sci. Technol., 18, 37 (2010)
  8. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154, 337
  9. Fukukawa BH, Donghwa Technology., 69 (2003)
  10. Ozcan A, Ozcan AS, J. Hazard Mater., B125, 252 (2005)
  11. Mital A, Kurup L, Gupta VK, J. Hazard Mater., B117, 171 (2005)
  12. Chingombe P, Saha B, Wakeman RJ, J. Colloid Interface Sci., 302(2), 408 (2006)
  13. Shi QQ, Zhang J, Zhang CL, Nie W, Zhang B, Zhang HY, J. Colloid Interface Sci., 343(1), 188 (2010)
  14. Sivakumar P, Palanisamy PN, Int. J. Chem. Tech. Res., 1, 502 (2009)
  15. Lee JJ, Appl. Chem. Eng., 22(2), 224 (2011)
  16. McKay G, Guendi ME, Nassar M, Water Res., 21, 1513 (1987)
  17. Zhang J, Shi QQ, Zhang CL, Xu JT, Zhai B, Zhang B, Bioresour. Technol., 99(18), 8974 (2008)
  18. Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W, Chemosphere., 53, 655 (2003)
  19. Jaycock MJ, Parfitt GD, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981)
  20. Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)