화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.6, 1043-1048, December, 2012
전기이중층 커패시터의 성능에 미치는 산소/질소 함유 관능기들의 영향
Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor
E-mail:
초록
본 논문에서는 전기이중층 커패시터(EDLC, Eclectical Double Layer Capacitor)의 전극소재로 쓰이는 활성탄소의 안정화를 위해 산소함유관능기를 최소화하고 질소함유관능기의 도입을 통해 유기용액계의 전해질을 가지는 EDLC의 축전용량을 개선하는 연구를 하였다. 주사전자현미경(SEM, Scanning Electron Microscopy), 후리에 변환적외선분광기(FTIR, Fourier Transform Infrared), 자동원소분석기(EA, Elemental Analysis), 보엠(Boehm) 적정법, 충·방전 테스트 등의 분석법을 이용하여 그 결과를 확인하였다. 산 처리를 통하여 산소함유관능기가 도입되고 요소처리를 통하여 질소함유관능기가 도입되었음을 확인하였다. 질소함유관능기 도입을 통하여 EDLC의 g 당 방전용량을 2 mA 상승시켰으며 빠른 속도로 최대 충·방전 성능을 달성하였다. 반면 산소함유관능기는 전해질 속의 전하가 탄소표면에 흡·탈착되는 것을 방해하기 때문에 낮은 방전용량을 보였고, 충·방전 횟수가 늘어남에 따라 방전용량의 큰 감소를 보여주었다.
In this study, activated carbons (ACs) were modified as electrode materials for an electric double layer capacitor (EDLC) by controlling oxygen- and nitrogen-containing functional groups. The morphological and chemical properties of ACs were analyzed through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectrometer, automatic elemental analyzer (EA) and Boehm titration. Also, charge/discharge tests were performed to investigate the EDLC performance. Oxygen- and nitrogen-containing functional groups were introduced on the surface of ACs through acid and urea treatments, respectively. ACs with nitrogen-containing functional groups showed 2 mA increase of gravimetric discharge capacity and quick achievement of maximum charge/discharge performance. However, ACs with oxygen-containing functional groups showed low discharge capacity and its gradual decrease during further cyclic test, since the functional groups interrupted adsorption/ desorption of charges in the electrolyte on the surface of ACs.
  1. http://203.253.128.6:8088/servlet/eic.wism.EICWeb.
  2. Burke A, J. Power Sources, 91(1), 37 (2000)
  3. Sharma P, Bhatti TS, Energy Conv. Manag., 51(12), 2901 (2010)
  4. Frackowiak E, Beguin F, Carbon., 39, 937 (2001)
  5. Inagaki M, Konno H, Tanaike O, J. Power Sources, 195(24), 7880 (2010)
  6. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  7. Boehm HP, Carbon., 32, 759 (1994)
  8. Qu DY, J. Power Sources, 109(2), 403 (2002)
  9. Beguin F, Frackowiak E, Carbons for Electrochemical Energy Storage and Conversion Systems, CRC Press, 187 (2009)
  10. Frackowiak E, Lota G, Machnikowski J, Vix-Guterl C, Beguin F, Electrochim. Acta, 51(11), 2209 (2006)
  11. Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E, Chem. Phys. Lett., 404(1-3), 53 (2005)
  12. Hulicova D, Kodama M, Hatori H, Chem. Mater., 18, 2318 (2006)
  13. Boehm HP, Carbon., 40, 145 (2002)
  14. Goertzen SL, Theriault KD, Oickle AM, Tarasuk AC, Andreas HA, Carbon., 48, 1252 (2010)
  15. Oickle AM, Goertzen SL, Hopper KR, Abdalla YO, Andreas HA, Carbon., 48, 3313 (2010)
  16. Shen W, Li Z, Liu Y, Recent Patents on Chemical Engineering., 1, 27 (2008)
  17. Seredych M, Hulicovajurcakova D, Lu G, Bandosz T, Carbon., 46, 1475 (2008)
  18. Chingombe P, Saha B, Wakeman RJ, Carbon., 43, 3132 (2005)
  19. Leon Y, Leon CA, Radovi LR, Chem. Phys. Carbon, Marcel Dekker., 24, 213 (1994)