화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.51, No.2, 285-291, April, 2013
QCM기반 NO2와 SO2 감지용 센서시스템
A QCM-based Sensor System for Detecting NO2 and SO2
E-mail:
초록
Quartz crystal microbalance (QCM)을 기반으로 기체 흡착센서 시스템을 구성하기 위하여 감지물질, 코팅방법, 희석가스 및 온도의 영향 등이 면밀하게 검토되었다. 특히 주요 대기 오염물질로 알려진 NO2와 SO2를 감지할 수 있도록 polypyrrole과 poly(3,4-ethylenedioxythiophene) 고분자 물질이 코팅된 QCM 센서소자를 구성하였으며, 만들어진 센서소자들은 ppm 수준의 농도에서 두 가스에 대한 높은 선택성과 감도를 보였다. 센서소자의 감지특성과 응답속도는 감지물질의 코팅방법과 코팅량에 크게 의존하였다.
The effects of sensing materials, coating methods, diluent gases, and temperature have been studied in detail to make a quartz crystal microbalance based adsorption sensor system for detecting gases. In particular, sensor elements for detecting NO2 and SO2, that are known as major air pollutants, have been prepared by coating two different polymers, polypyrrole and poly(3,4-ethylenedioxythiophene). The sensor elements prepared in this work have high sensitivity and selectivity for NO2 and SO2 at ppm level concentrations. It was proven that the sensing characteristics and response rate of the sensing elements are highly dependent on the coating method and the loading mass of sensing materials.
  1. Arshak K, Moore E, Lyons GM, Harris J, Clifford S, Sens. Rev., 24, 181 (2004)
  2. Penza M, Cassano G, Tortorella F, Zaccaria G, Sens. Actuator B-Chem., 73, 76 (2001)
  3. Kim YH, Choi KJ, Sens. Actuator B-Chem., 87, 196 (2002)
  4. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S, Biosens. Bioelectron., 22, 752 (2006)
  5. Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N, Anal. Chem., 77, 4282 (2005)
  6. Mukhopadhyay R, Sumbayev VV, Lorentzen M, Kjems J, Andreasen PA, Besenbacher F, Nano Lett., 5, 2385 (2005)
  7. Vancura C, Li Y, Lichtenberg J, Kirstein KU, Hierlemann A, Anal. Chem., 79, 1646 (2007)
  8. Harbecka M, Erbahara DD, Grola I, Musluoglua E, Ahsen V, Ozturka ZZ, Sens. Actuator B-Chem., 150, 346 (2010)
  9. Hao R, Wang D, Zhang X, Zuo G, Wei H, Yang R, Zhang Z, Cheng Z, Guo Y, Cui Z, Zhou Y, Biosens. Bioelectron., 24, 1330 (2009)
  10. Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ, Science., 294, 137 (2001)
  11. Nath N, Chilkoti A, J. Fluoresc., 14, 377 (2004)
  12. Wee KW, Kang GY, Park JB, Kang JY, Yoon DS, Park JH, Kim TS, Biosens. Bioelectron., 20, 1932 (2005)
  13. Eun AJC, Huang L, Chew FT, Li SFY, Wong S, J. Virol. Methods., 99, 71 (2002)
  14. Gao N, Dong J, Liu M, Ning B, Cheng C, Guo C, Zhou C, Peng Y, Bai J, Gao Z, Analyst., 137, 1252 (2012)
  15. Lee MH, Thomas JL, Tseng HY, Lin WC, Liu BD, Lin HY, ACS Appl. Mater.Interfaces., 3, 3064 (2011)
  16. Skotadisa E, Tannera JL, Stathopoulosa S, Tsoutib V, Tsoukalasa D, Sens. Actuator BChem., “Chemical Sensing Based on Double Layer PHEMA Polymer and Platinum Nanoparticle Films,” available online (2012)
  17. Hasanzadeh M, Shadjou N, Chen ST, Sheikhzadeh P, Catal. Commun., 19, 21 (2012)
  18. Zhua Y, Yuan H, Xu J, Xu P, Pan Q, Sens. Actuator B-Chem., 144, 164 (2010)
  19. Zybaylo Q, Shekhah O, Wang H, Tafipolsky M, Schmid R, Johannsmannc D, Woll C, Phys. Chem. Chem. Phys., 12, 8092 (2010)
  20. Fu Y, Finklea HO, Anal. Chem., 75, 5387 (2003)
  21. Ba M, Ferrari M, Tonoli E, Ferrari V, Procedia Engineering., 25, 737 (2011)
  22. Nakayama S, Nazaki R, Senna M, J. Biomater. Sci.-Polym. Ed., 19, 315 (2008)
  23. Hwang MJ, Shim WG, Ryu DW, Moon H, J. Chem. Eng. Data, 57(3), 701 (2012)
  24. Sauerbrey G, Z. Phys., 155, 206 (1959)
  25. Tsionsky V, Gileadi E, Langmuir, 10(8), 2830 (1994)
  26. Kanazawa K, Gordon G, Anal. Chim. Acta., 175, 99 (1985)
  27. Duong DD, Adsorption Analysis: Equilibria and Kinetics., Imperial College Press (1998)
  28. Huang HH, Tian M, Yang J, Li HX, Liang WL, Zhang LQ, Li XL, J. Appl. Polym. Sci., 107(5), 3325 (2008)