화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.3, 299-304, June, 2013
반응 표면 분석법을 이용한 일체형 흡착제의 합성 조건 최적화
Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology
E-mail:
초록
Box-Behnken design (BBD) 방법은 일체형 흡착제의 합성조건을 최적화하기 위해 사용되었다. 단량체(monomer)의 양(mL), 가교제(crosslink)의 양(mL), porogen의 양(mL)에 대한 효과를 조사했다. 실험 값은 여러 회귀분석 및 통계적인 방법에 의해 2차 다항 방정식을 얻었다. 이 모델의 결정계수(R2)는 0.9915이고 결정계수의 p value는 0.0001보다 작은 값으로 모델이 매우 유의미하다는 것을 나타낸다. RSM 모델에 의해 예측된 최적의 일체형 흡착제 합성조건은 단량체의 양 0.30 mL, 가교제의 양 1.40 mL, porogen의 양 1.47 mL이고 이 조건 아래서 합성된 일체형 흡착제의 양은 2120.15 mg이다. 이 결과는 이 모델이 적절하다는 것을 나타내었다.
A 17-run Box-Behnken design was used to optimize the synthesis conditions of a monolithic sorbent. The effects of the amount of monomer (mL), crosslink (mL) and porogen (mL) were investigated. The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The adjusted coefficient of determination (R2) of the model was 0.9915. The probability value (p < 0.0001) demonstrated a high significance for the regression model. A mean amount of polymer as 2120.15 mg was produced under the following optimum synthesis conditions: the optimized volumes of monomer, crosslink and porogen are 0.30, 1.40, and 1.47 mL, respectively. This was in good agreement with the predicted model value.
  1. Hashem H, Jira T, Chromatographia., 61, 133 (2005)
  2. Korner A, Kohn S, J. Chromatogr. A., 1089, 148 (2005)
  3. Mihelic I, Nemec D, Podgornik A, Koloini T, J. Chromatogr.A., 1065, 59 (2005)
  4. Zhu T, Row KH, J. Liq. Chromatogr. Related Technol., 32, 1423 (2009)
  5. Zhu T, Row KH, Chromatographia., 71, 981 (2010)
  6. Fontanals N, Marce RM, Borrull F, J. Chromatogr. A., 1152, 14 (2007)
  7. Guerrouache M, Carbonnier B, Vidal-Madjar C, Millot MC, J. Chromatogr. A., 1149, 368 (2007)
  8. Luo Q, Zou H, Xiao X, Guo Z, Kong L, Mao X, J.Chromatogr. A., 926, 255 (2001)
  9. Tanaka N, Kobayashi H, Ishizuka N, J. Chromatogr. A., 965, 35 (2002)
  10. Vlakh EG, Tennikova TB, J. Sep. Sci., 30, 2801 (2007)
  11. Box GEP, Wilson KB, J. R. Statist. Soc. A., 13, 1 (1951)
  12. Sun Y, Li T, Yan J, Liu J, Carbohydr. Polym., 80, 242 (2010)
  13. Guo JQ, Luo YE, Fan DD, Gao PF, Ma XX, Zhu CH, Chin. J. Chem. Eng., 18(5), 830 (2010)
  14. Wu Y, Cui SW, Tang J, Gu X, Food Chem., 105, 1599 (2007)
  15. Yin G, Dang Y, Carbohydr. Polym., 74, 603 (2008)
  16. Zhang C, Fan DD, Shang LA, Ma XX, Luo YE, Xue WJ, Gao PF, Chin. J. Chem. Eng., 18(1), 137 (2010)
  17. Zhu T, Heo HJ, Row KH, Carbohydr. Polym., 82, 106 (2010)
  18. Box GEP, Wilson KB, J. R. Statist. Soc. A., 13, 1 (1951)
  19. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brand GC, Anal. Chim. Acta., 597, 179 (2007)
  20. Zhao H, Wang J, Lu Z, Carbohydr. Polym., 77, 677 (2009)
  21. Xu H, Sun LP, Shi YZ, Wu YH, Zhang B, Zhao DQ, Biochem. Eng. J., 39, 66 (2008)
  22. Li R, Chen W, Wang W, Tian W, Zhang X, Carbohydr.Polym., 78, 784 (2009)
  23. Song WY, Chang SW, J. Kor. Soc. Wat. Qual., 25, 96 (2009)