화학공학소재연구정보센터
Clean Technology, Vol.19, No.2, 121-127, June, 2013
알럼 슬러지를 이용한 입상흡착제 압출 및 황화수소 제거 성능
Extrusion of Pellet-type Adsorbents Employed with Alum Sludge and H2S Removal Performance
E-mail:
초록
본 연구의 목적은 알럼 슬러지를 사용하여 입상흡착제를 제조하기 위한 압출 공정을 최적화하는 것이다. 함수율과 바인더인 메틸 셀룰로스의 함량이 압출 가능성과 입상흡착제의 물리적 특성에 미치는 영향을 연구하였다. 입상흡착제의 물리적 특성은 질소 흡착실험과 압축 강도 측정을 통해서 분석하였다. 증류수와 알럼 슬러지 가공분말의 비가 63/100인 경우가 입상흡착제의 외형이 원통형으로 잘 성형되었고, 압축강도도 가장 높게 나타났다. 메틸 셀룰로스의 함량을 증가시키면 압축강도가 개선되었으나 비표면적이 감소하였다. 성형된 입상흡착제의 소성과정을 거치면 입상흡착제의 표면적이 크게 증가하여 황화수소의 파과 시간이 획기적으로 증가하였으며, 황화수소 파과 용량은 1,700 mg/g 이상을 얻을 수 있었다.
The objective of this study is optimization of extrusion process for preparation of pellet-type adsorbents employed with alum sludge. Effects of water content and methyl cellulose as a binder on the possibility of extrusion and physical properties of pellet-type adsorbents were investigated. The physical characteristics of the pellet-type adsorbents were studied using nitrogen adsorption and compression strength. With a ratio of water to sludge, 63/100, the adsorbent was well extruded with a cylindrical form and the compressive strength was the highest. With increasing methyl cellulose content, the compressive strength of pellet-type adsorbent could be improved, but the specific surface area decreased. The breakthrough time of the hydrogen sulfide could be increased significantly through calcination and the breakthrough capacity reached to 1,700 mg/g, which seems to be due to increase of surface area during calcination.
  1. Cundy CS, Cox PA, Chem. Rev., 103(3), 663 (2003)
  2. Jeong JT, Lee BH, Lee KH, J. Kor. Soc. Civil. Eng., 20, 583 (2000)
  3. Kim JM, Kim MK, Lee JM, Lee CH, Lee SW, Choi DJ, La JM
  4. Hwang HU, Kim JH, Kim YJ, J.Kor. Soc. Environ. Eng., 31(3), 217 (2009)
  5. Lee JK, Beak SG, Kim ZC, Lee JI, Pyo BS, Choi JG, Kim PC, Park GH, J. KOWREC, 8(1), 103 (2000)
  6. Kang KC, Kim YH, Kim J, Lee CH, Rhee SW, Appl. Chem. Eng., 22(2), 173 (2011)
  7. Bae J, Park N, Lee CH, Park YK, Jeon JK, Korean Chem. Eng. Res., 51(3), 352 (2013)
  8. Yuan WX, Bandosz TJ, Fuel, 86(17-18), 2736 (2007)
  9. Flytzani-Stephanopoulos M, Sakbodin M, Wang Z, Science., 312, 1508 (2006)
  10. Bandosz TJ, J. Colloid Interface Sci., 246(1), 1 (2002)
  11. Adib F, Bagreev A, Bandosz TJ, Langmuir, 16(4), 1980 (2000)
  12. Bagreev A, Bandosz TJ, Ind. Eng. Chem. Res., 41(4), 672 (2002)
  13. Le Leuch LM, Subrenat A, Le Cloirec P, Environ. Technol., 26(11), 1243 (2005)
  14. Polovina M, Kaluderovic B, Babic B, J. Serb. Chem. Soc., 63, 653 (1998)
  15. Lee YC, Jeon JK, Clean Technol., 18(2), 216 (2012)
  16. Lim JW, Choi Y, Yoon HS, Park YK, Yim JH, Jeon JK, J. Ind. Eng. Chem., 16(1), 51 (2010)
  17. Rouquerol J, Avnir D, Fairbridge CW, Everet DH, Haynes JH, Pernicone N, Ramsay J, Sing KS, Unger KK.,, Pure Appl. Chem., 66, 1739 (1994)