Chemical Engineering Research & Design, Vol.91, No.5, 778-788, 2013
Two-step design protocol for patterned groove micromixers
Micromixers are essential components of microreactor technology. In this paper, a simple two-step design protocol for patterned groove micromixers based on numerical simulations is presented. In the first step, one groove of the staggered herringbone micromixer (SHM) is designed based on the average magnitude of transversal velocity nu(AVGyz) at the end of the groove. In the second step, different configurations of six grooves are investigated. A slightly better mixing is achieved compared to the established SHM and significantly fewer grooves are needed. Due to fewer grooves and rounded groove corners, the new design is easier to be produced by microengineering technologies (MET). Additionally, good mixing was also achieved with a modified slanted groove micromixer (SGM) configuration with the largest rounding radius at the edges. A SGM prototype was machined by micro EDM milling. The simulation results were experimentally verified with flow visualization and a good agreement was observed. The presented protocol vastly reduces the number of optimal patterned groove geometry configuration candidates to be evaluated; it is simple and effective for practical applications. (c) 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.