화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.1, 53-57, February, 2014
전기화학적 마이크로머시닝 기술을 이용한 균일한 니오븀 표면 에칭 연구
Homeogenous Etched Pits on the Surface of Nb by Electrochemical Micromachining
E-mail:
초록
본 연구에서는 micro-contact printing을 통하여 니오븀 호일 표면 위에 균일한 에칭 pits를 형성하였다. 균일한 보호층을 형성하고자 전해연마의 효과를 확인하였으며, 기존의 O2 플라즈마 공정 없이 손쉽게 균일한 에칭 pits를 형성시킬 수 있는 조건을 확인하였다. 메탄올 혼합 전해질을 사용하여 10 min 동안 에칭을 진행한 결과 니오븀 호일 표면 위에 지름과 간격이 각각 10 μm와 5 μm로 잘 정렬된 에칭 pits를 관찰하였다.
We describe the preparation of highly-ordered etching pits on the Nb foil through a micromachining. The effects of electrochemical polishing on the formation of uniformly-patterned protective epoxy layer was investigated. Unlike the previous process using O2 plasma, well-ordered etched pits were prepared without any dry processes. As a result, the Nb foil with the well-ordered pits of 10 μm × 5 μm could be obtained by electrochemical etching in methanolic electrolytes for 10 min.
  1. Zhu D, Qu NS, Li HS, Zeng YB, Li DL, Qian SQ, CIRP Ann.-Manuf. Techn., 58, 177 (2009)
  2. Kim BH, Na CW, Lee YS, Choi DK, Chu CN, CIRP Ann.-Manuf. Techn., 54, 191 (2005)
  3. Datta M, Landolt D, Electrochim. Acta, 45(15-16), 2535 (2000)
  4. West AC, Madore C, Matlosz M, Landolt D, J. Electrochem. Soc., 139, 499 (1992)
  5. Datta M, J. Electrochem. Soc., 142(11), 3801 (1995)
  6. Malshe AP, Virwani K, Rajurkar KP, Deshpande D, CIRP Ann.-Manuf. Techn., 54, 175 (2005)
  7. Chauvy PF, Hoffmann P, Landolt D, Appl. Surf. Sci., 211(1-4), 113 (2003)
  8. Rajurkar KP, Levy G, Malshe A, Sundaram MM, McGeough J, Hu X, Resnick R, DeSilva A, CIRP Ann.-Manuf. Techn., 55, 643 (2006)
  9. Kim C, Kim JY, Sridharan B, Sensor. Actuat.A-Phys., 64, 17 (1998)
  10. Wickenden DK, Champion JL, Osiander R, Givens RB, Lamb JL, Miragliotta JA, Oursler DA, Kistenmacher TJ, Acta Astronaut., 52, 142 (2003)
  11. Jakeway SC, de Mello AJ, Russell EL, Anal. Bioanal.Chem., 366, 525 (2000)
  12. Lu X, Leng Y, J. Mater. Process. Tech., 169, 173 (2005)
  13. McAuley SA, Asharf H, Atabo L, Chambers A, Hall S, Hopkins J, Nicholls G, J. Phys. D Appl. Phys., 34, 2769 (2001)
  14. Katehi LPB, Harvey JF, Herrick KJ, IEEE Microw. Mag., 2, 30 (2001)
  15. Mori Y, Yamamura K, Yamauchi K, Yoshii K, Kataoka T, Endo K, Inagaki K, Kakiuchi H, J. Mater.Process Tech., 4, 225 (1993)
  16. Chauvy PF, Hoffmann P, Landolt D, Electrochem. Solid State Lett., 4(5), C31 (2001)
  17. Allongue P, Jiang P, Kirchner V, Trimmer AL, Schuster R, J. Phys. Chem. B, 108(38), 14434 (2004)
  18. Fofonoff TA, Martel SM, Hatsopoulos NG, Donoghue JP, Hunter IW, IEEE T. Bio-Med.Eng., 51, 890 (2004)
  19. Kenney JA, Hwang GS, Nanotechnology., 16, S309 (2005)
  20. Ihlemann J, Wolff-Rottke B, Appl. Surf. Sci., 106, 282 (1996)
  21. Bhattacharyya B, Munda J, Malapati M, Int. J. Mach. Tool. Manu., 44, 1577 (2004)
  22. Datta M, Shenoy RV, Romankiw LT, J. Eng. Ind. Trans.ASME., 118, 29 (1996)
  23. Datta M, Harris D, Electrochim. Acta, 42(20-22), 3007 (1997)
  24. Rosset E, Datta M, Landolt D, J. Appl. Electrochem., 20, 69 (1990)
  25. Cagnon L, Kirchner V, Kock M, Schuster R, Ertl G, Gmelin WT, Kuck H, Z. Phys. Chem., 217, 299 (2003)
  26. Datta M, Romankiw LT, J.Electrochem. Soc., 136, 285 (1989)
  27. Shuster R, Kirchner V, Allongue P, Ertl G, Science., 289, 98 (2000)
  28. Kim K, Park J, Cha G, Yoo JE, Choi J, Mater. Chem. Phys., 141(2-3), 810 (2013)
  29. Yoo JE, Choi J, Electrochem.Commun., 13, 298 (2011)
  30. Tanvir MT, Aoki Y, Habazaki H, Appl. Surf. Sci., 255(20), 8383 (2009)
  31. Park G, Kim K, Lee H, Park C, Kim Y, Tak Y, Choi J, Appl. Chem. Eng., 23(5), 501 (2012)