화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.2, 174-180, April, 2014
유전체장벽방전 플라즈마 중합을 이용한 양어 사료의 소수성 코팅
Hydrophobic Coating on Fish Feed Using Dielectric Barrier Discharge Plasma Polymerization
E-mail:
초록
양어 사료의 부상시간을 연장시켜, 사료 소비율을 높이고 양식장 수질오염을 저하시키기 위해 사료에 소수성 코팅을 하였다. 상압 유전체장벽방전 플라즈마 반응기 시스템에서 헥사메틸다이실록세인(HMDSO), 톨루엔 및 n-헥세인을 전구물질로 사용하여 사료 입자의 표면에 코팅 층을 형성시켰다. 공정 변수인 플라즈마 구동을 위한 입력 전력, 전구물질 종류, 코팅시간을 변화시키며 코팅 성능을 비교하였다. 코팅된 사료 표면의 물리, 화학적 성질은 접촉각 측정기와 퓨리 에 변환 적외선 분광광도계를 이용하여 조사하였다. 소수성 플라즈마 코팅 후 물의 접촉각 증가는 표면이 소수성으로 변화하였음을 나타냈으며, 코팅된 시료의 적외선 분광 스펙트럼을 통해 소수성 피막이 CH3, Si-O-Si, Si-C로 구성되어 있음을 알 수 있었다. 코팅된 사료의 부상시간이 미코팅 사료에 비해 수초에서 3 min까지 증가하였으며, 플라즈마 코팅 방법이 사료의 부상성능을 향상시키는 방법으로 사용될 수 있음을 보여 주었다. 코팅 직후 시료에 비해 6일 경과 후 시료의 물 접촉각이 크게 증가하였는데, 이를 통해 에이징 효과를 확인할 수 있었다.
A plasma hydrophobic coating on commercial fish feed was conducted to prolong the floating time of feed, thereby enhancing the feed consumption rate and reducing the contamination of water in fish farms. The hydrophobic coating on the fish feed was prepared using an atmospheric-pressure dielectric barrier discharge (DBD) plasma with hexamethyldisiloxane (HMDSO), toluene and n-hexane as the precursors. The effect of the parameters such as input power, precursor type and coating time on the coating performance were examined. The physicochemical properties of the coating layer were analyzed using a Fourier transform infrared (FTIR) spectrometer and a contact angle (CA) analyzer. The water CA increased after the coating preparation, indicating that the surface changed from hydrophilic to hydrophobic. The FTIR characterization revealed that the hydrophobic layer was comprised of functional groups such as CH3, Si-O-Si and Si-C. As a result of the hydrophobic coating, the floating time of the fish feed increased from several seconds to 3 minutes, which suggested that the plasma coating method could be a viable means for practical applications. Compared to the water CA measured as soon as the coating layer was prepared, the 6-day aged sample exhibited a substantial CA increase, confirming the aging effect on the improvement of the hydrophobicity.
  1. Natale F, Hofherr J, Fiore G, Virtanen J, Mar. Policy, 38, 205 (2013)
  2. Merino G, Barange M, Mullon C, Rodwell L, Global Environ. Change, 20, 586 (2010)
  3. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R, Phil. Trans. Royal Soc. Biol. Sci., 365, 2897 (2010)
  4. Cha SH, Kang SM, Je SS, Lee JS, Jeon YJ, J. Chitin. Chitosan, 12, 144 (2007)
  5. Kang HG, A Study on Efficiency of Flatfish Aquaculture in Korea, Master Dissertation, Pukyung National University, Pusan, Korea (2011).
  6. Seo JY, Jang HS, Kim KD, Kim GU, Lee SM, J. Aquacult., 18, 98 (2005)
  7. Crick CR, Parkin IP, Chem.-Eur. J., 16, 3568 (2010)
  8. Nakajima A, Hashimoto K, Watanabe T, Monatsh. Chem., 132, 31 (2001)
  9. Ma M, Hill RM, Curr. Opin. Colloid Interface Sci., 11, 193 (2006)
  10. Kumar A, Gaurav, Malik AK, Tewary DK, Singh B, Anal. Chim. Acta, 610, 1 (2008)
  11. Yan YY, Gao N, Barthlott W, Adv. Colloid Interface Sci., 169, 80 (2011)
  12. Merche D, Vandencasteele N, Reniers F, Thin Solid Films, 520(13), 4219 (2012)
  13. Morent R, Geyter ND, Vlierberghe SV, Dubruel P, Surf. Coat. Technol., 203, 1366 (2009)
  14. Friedrich J, Plasmas Proc. Polym., 8, 783 (2011)
  15. Fang Z, Qiu X, Qiu Y, Kuffel E, IEEE Trans. Plasma Sci., 34, 1216 (2006)
  16. Vandencasteele N, Reniers F, J. Electron Spectrosc. Relat. Phenom., 178-179, 394 (2010)
  17. Ji Y, Hong YC, Lee SH, Kim SD, Kim SS, Surf. Coat. Technol., 202, 5663 (2008)
  18. Lommatzsch U, Ihde J, Plasmas Proc. Polym., 6, 642 (2009)
  19. De Geyter N, Morent R, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E, Plasma Chem. Plasma Process., 28(2), 289 (2008)
  20. Kim GH, Jeong SY, Kwon HC, J. Korean Phys. Soc., 49, 1307 (2006)
  21. Nishikida K, Coates J, Infrared and raman analysis of polymers. In: H. Lobo and J. V. Bonilla (eds.). Handbook of Plastics Analysis, 201-340, Marcel Dekker Inc., NY, USA (2003).
  22. Ramamoorthy A, Rahman M, Mooney DA, Macelroy JMD, Dowling DP, Plasma Proc. Polym., 6, S530 (2009)
  23. Morent P, Geyter ND, Vlierberghe SV, Dubruel P, Leys C, Gengembre L, Schacht E, Payen E, Prog. Org. Coat., 64, 304 (2009)
  24. Lamendola R, d’Agostino R, Fracassi F, Plasmas Polym., 2, 147 (1997)
  25. Kondyurin A, Polonskyi O, Nosworthy N, Matousek J, Hlidek P, Biederman H, Bilek MMM, Plasma Proc. Polym., 5, 727 (2008)
  26. Yu YJ, Kim JG, Cho SH, Boo JH, Surf. Coat. Technol., 162, 161 (2003)
  27. Hillborg CH, Loss and Recovery of Hydrophobicity of Polydimethylsiloxane after Exposure to Electrical Discharges, Nykopia, Solna, Sweden (2001).
  28. Yasuda H, Sharma AK, J. Polym. Sci. B: Polym. Phys., 19, 1285 (1981)
  29. Kim J, Kim TH, Oh JG, Noh SH, Lee JS, Park KH, Ha S, Kang H, Bull. Korean Chem. Soc., 30, 2589 (2009)
  30. David A, Puydt Y, Dupuy L, Descours S, Sommer F, Tran MD, Viard J, Surface analysis for plasma treatment characterization. In: H. Rauscher, M. Perucca, and G. Buyle (eds.). Plasma Technology for Hyperfunctional Surfaces, 91-132, WILEY-VCH Verlag GmbH & Co. KGaA, Weinneim, Germany (2010).
  31. Twomey B, Rahman M, Byrne G, Hynes A, O’Hare LA, O’Neill L, Dowling D, Plasma Proc. Polym., 5, 737 (2008)