Applied Chemistry for Engineering, Vol.25, No.3, 307-311, June, 2014
밤나무 재활용에 의한 구리 이온의 생물흡착
Biosorption of Copper Ions by Recycling of Castanea crenata
E-mail:
초록
본 연구에서는 4종류의 목재 폐기물(밤나무, 소나무, 낙엽송, 아카시아) 중에서 구리 이온 제거 능력이 뛰어난 생물흡착제로서 밤나무를 도출하였으며, 또한, 이 밤나무를 이용하여 수중에 함유된 5, 10, 20, 40 mg/L 구리 이온의 제거 효율에 대하여 고찰하였다. 5 mg/L 구리 이온 제거를 위하여, 43∼63 μm 입자 크기의 밤나무 사용이 가장 효과적임을 알 수 있었다. 밤나무 주입 농도를 증가하였을 때, 구리 제거효율이 향상되었다. 또한, 0.8 g/100 mL 밤나무가 30 min 동안 사용되었을 때, 20, 40 mg/L 구리 이온 제거효율은 각각 99, 85% 제거효율을 나타내었다. 그리고 50 mg/L 구리 이온의 제거 능력을 향상시키기 위하여, 밤나무에 1 M 아세트산나트뮴의 화학적 처리가 필요함을 알 수 있었다. 한편, 개질된 밤나무를 재활용하기 위하여 최적의 탈착제로서 93% 구리 탈착 효율을 나타낸 1 M 염산을 선정하였다. 따라서 이러한 실험 결과들은 경제적이고 실용적인 공학 자료로서 구리 제거 공정 개발에 활용될 수 있을 것이다.
In this present study, Castanea crenata was found as an excellent biosorbent for the removal capability of copper ions among four different wood wastes (Castanea crenata, Pinus densiflora, Larix kaemoferi and Robinia pseudoacaia). Also, the removal efficiencies of 5, 10, 20, 40 and 50 mg/L copper ions using Castanea crenata from aqueous solution were investigated. The most effective particle size of Castanea crenata for removing 5 mg/L copper ions was found to be 43∼63 μm. When the concentration of Castanea crenata increased, the removal efficiencies of copper ions were enhanced. In addition, when the 0.8 g/100 mL of Castanea crenata was used for 30 min, the removal efficiencies of 20 and 40 mg/L copper ions were 99% and 85%, respectively. Moreover, the chemical treatment of Castanea crenata with 1 M sodium acetate was required to improve the removal ability for 50 mg/L copper ions. Meanwhile, 1 M hydrochloric acid was selected as the optimal desorption agent with 93% desorption efficiency of copper ions for recycling of modified Castanea crenata. Therefore, these experimental results could be employed as economical and practical engineering data for the development of copper removal processes.
Keywords:Castanea crenata;removal efficiencies of copper ions;recycling of modified Castanea crenata
- Lee HY, Jeon C, Choi SS, Kor. J. Environ. Agric., 28(2), 158 (2009)
- Martin MI, Lopez FA, Perez C, Lopez-Delgado A, Alguacil FJ, J. Chem. Technol. Biotechnol., 80(11), 1223 (2005)
- Panday KK, Prasad G, Singh VN, Water Res., 19(7), 869 (1985)
- Panday KK, Prasad G, Singh VN, Water Air Soil Poll., 27, 287 (1986)
- Acar FN, Eren Z, J. Hazard. Mater., 137(2), 909 (2006)
- Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q, J. Hazard. Mater., 263, 322 (2013)
- Aksu Z, Gonen F, Demircan Z, Proc. Biochem., 38, 175 (2002)
- Lalhruaitluanga H, Jayaram K, Prasad MNV, Kumar KK, J. Hazard. Mater., 175(1-3), 311 (2010)
- Shin TS, Lim BS, Lee SW, Rhu KG, Jeong SK, Kim KY, Chlorella pyrenoidosa, J. Kor. Soi. Environ. Eng., 31, 663 (2009)
- Norton L, Baskaran K, McKenzie T, Advances in Environ. Research, 8, 629 (2004)
- Iqbal M, Edyvean RGJ, Miner. Eng., 17, 217 (2004)
- Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y, Biochemical Eng. J., 19, 127 (2004)
- Kim YH, Park JY, Yoo YJ, Kwak JW, Process Biochem., 34(6), 647 (1999)
- Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL, J. Hazard. Mater., 80(1-3), 33 (2000)
- Jeon C, J. Industrial and Eng. Chem., 17, 517 (2007)
- Park SK, Kim HN, Kim YK, J. Kor. Soc. Environ. Eng., 29, 930 (2007)