화학공학소재연구정보센터
Clean Technology, Vol.20, No.2, 166-170, June, 2014
강산성 양이온 교환수지를 충전한 고정층에서 리튬이온의 제거특성
Removal Characteristics of Lithium Ions by Fixed-bed Column Packed with Strong-Acid Cation Exchange Resin
E-mail:
초록
강산성 양이온 교환수지를 충전한 고정층 컬럼을 사용하여 수중의 리튬이온을 제거하는 연속식 실험을 수행하였다. 층 높이, 유입 유량 및 유입 농도와 같은 파라미터들을 살펴보았으며, 파과곡선으로부터 파과시간(t0.05), 포화시간(t0.95) 및 제거된 리튬이온의 총량(mtotal)을 구하였다. 실험 결과 t0.05와 t0.95는 층 높이가 감소함에 따라 감소하였고, 유입 농도와 유입 유량이 증가함에 따라 감소하였다. mtotal은 유입 유량과 층 높이가 증가함에 따라 증가하였지만, 유입 유량이 증가함에 따라서는 감소하였다. 실험자료를 토마스 모델식과 윤-넬슨 모델식을 적용한 결과, 토마스 모델식이 파과 데이터에 잘 부합하였다.
The continuous experiments were carried out using fixed-bed column packed with strong-acid cation exchange resin for the removal of lithium ions from aqueous solution. The parameters such as bed height, flow rate and inlet concentration were investigated. Breakthrough time (t0.05), saturation time (t0.95), and total amount of lithium ion removed (mtotal) were obtained from the breakthrough curves. The results showed that t0.05 and t0.95 decreased with decreasing bed height, and decreased with increasing inlet concentration and flow rate. mtotal increased with increasing inlet concentration and bed height, but decreased with increasing flow rate. Thomas model and Yoon-Nelson model equations were applied to the experimental data, the results showed that the breakthrough data gave a good fit to Thomas model equation.
  1. Chon U, Han G, Kim K, Kim KH, J. Kor. Inst. Res. Rec., 19, 3 (2010)
  2. Kitajou A, Suzuki T, Nishihama S, Yoshizuka K, Ars. Sep. Acta, 2, 97 (2003)
  3. Yanagase K, Tetsutaro Y, Kentaro K, Matsuoka T, Japan Bull. Chem. Soc. Jap., 56, 2490 (1983)
  4. Kim YS, In G, Choi JM, Bull. Korean Chem. Soc., 24, 1495 (2003)
  5. Wang F, Wang LJ, Li JS, Sun XY, Han WQ, Nonferrous Met. Soc. China, 19, 740 (2009)
  6. Navarrete-Guijosa A, Navarrete-Casas R, Valenzuela-Calahorro C, Lopez-Gonzalez JD, Garcia-Rodriguez A, J. Colloid Interface Sci., 264(1), 60 (2003)
  7. Rafati L, Mahvi AH, Asgari AR, Hosseini SS, Inter. Environ. Sci. Technol., 7, 147 (2010)
  8. Kobayashi T, Yoshimoto M, Nakao K, Ind. Eng. Chem. Res., 49, 1652 (2010)
  9. Alyuz B, Veli S, J. Hazard. Mater., 167(1-3), 482 (2009)
  10. You HN, Kam SK, Lee MG, Proceed. Kor. Environ. Sci. Soc. Conf., 22, 733 (2013)
  11. Hamdaoui O, J. Hazard. Mater., 161(2-3), 737 (2009)
  12. Aksu Z, Gonen F, Process Biochem., 39, 599 (2004)
  13. Han RP, Wang Y, Zou WH, Wang YF, Shi H, J. Hazard. Mater., 145(1-2), 331 (2007)
  14. Juang RS, Kao HC, Chen W, Sep. Purif. Technol., 49(1), 36 (2006)