화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.4, 586-591, June, 1999
유동층연소로에서 유연탄과 무연탄의 연소특성 해석
Analysis of Combustion Characteristics of Bituminous and Anthracite Coal in a Fluidized Bed Combustor
초록
유연탄과 무연탄 및 유, 무연탄의 연소특성을 해석하기 위하여 내경 0.109 m의 유동층반응기에서 회분석 석탄주입에 따른 유동화특성과 연소특성 실험을 수행하였다. 온도변화곡선, 압력요동특성치를 이용하여 회분식유동층에서 유연탄과 무연탄 및 혼합석탄의 연소특성을 측정하였다. 유연탄과 무연탄의 입자크기, 두 석탄의 혼합비, 유동화매질의 입자크기에 따른 영향을 고찰하였다. 유연탄과 무연탄의 혼합연소시 무연탄의 혼합비가 30 %인 경우가 유연탄의 연소속도 및 연소거동이 최적으로 나타났다. 저품위 고회분 무연탄의 경우 유동화특성보다 연소특성에 의한 영향이 더욱 크게 나타났다. 또한 유동층의 유동화 특성에 의하여 연소거동이 변화됨을 알 수있었다.
Mixed-firing of a bituminous and an anthracite coal carried out in a batch fluidized bed combustor(0.109 m-I.D., 0.9 m-height). Effect of particle size an mixing fraction of anthracite and bituminous coal combustion characteristics were studied. The temperature profiles and pressure fluctuation properties were measured to interpret the combustion characteristics in a batch fluidized bed combustor. The used domestic anthracite coal has heating value of 2010 kcal/kg and the imported high-calorific bituminous coal has heating value of 6520 kcal/kg. The combustion characteristics in a batch fluidized bed combustor could be interpreted by using pressure fluctuation properties and temperature increasing rates. It was found that the optimum anthracite mixing percentage could be predicted analyzing the combustion rate and fluidization characteristics, The optimum mixing fraction was about 30 %. The different burning region of fluidized bed combustor was measured by temperature increasing rates.
  1. Tanaka I, Shinohara H, Hirosue H, Tanaka Y, J. Chem. Eng. Jpn., 5, 51 (1972)
  2. Kato T, Wen CY, Chem. Eng. Sci., 24, 1351 (1969) 
  3. Fee DC, Wilson WI, Myles KM, Johnson I, Chem. Eng. Sci., 38, 1917 (1983) 
  4. Freeman WS, Carroll B, J. Phys. Chem., 62, 394 (1958) 
  5. Cooper GR, McGillem CD, "Probabilistic Methods of Signals and System Analysis," Holt, Rinehart and Winston Inc. (1971)
  6. Bendart JS, Piersol AG, "Random Data," John Wiley, New York (1971)
  7. Park D, Levenspiel O, Fitzyerald TJ, Fuel, 60, 295 (1981) 
  8. Poersch W, Bahnen R, Wagner R, 10th Int. Conf. on Fluidized Bed Combustion, Atlanta GA, April, 1175 (1988)
  9. Coats AW, Redfern JP, Nature, 201, 68 (1964) 
  10. Geldart D, Trans. Inst. Chem. Eng., 57, 267 (1979)
  11. Hazlett JD, Bergougnou MA, Powder Technol., 70, 99 (1992) 
  12. Chiba S, Chiba T, Nienow AW, Kobayashi H, Powder Technol., 22, 255 (1979) 
  13. Chiba S, Nienow AW, Chiba T, Kobayashi H, Powder Technol., 26, 1 (1980) 
  14. Hong SC, Cho BL, Doh DS, Choi CS, Powder Technol., 60, 215 (1990)