화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.6, 559-563, December, 2014
PVDF-HFP/이온성 액체 겔 분리막 제조 및 기체 투과도 측정
Preparation and Gas Permeability Measurements of PVDF-HFP/Ionic Liquid Gel Membranes
E-mail:
초록
상온에서 액체 상태인 이미다졸리움 계열의 이온성 액체에 이산화탄소가 잘 흡수된다는 사실은 잘 알려져 있다. 이러한 이산화탄소의 고용해도 때문에 이온성 액체를 포함하는 분리막은 이산화탄소/질소, 이산화탄소/메탄과 같은 기체 혼합물을 잘 분리할 수 있다. 본 연구에서는 다양한 종류의 이온성 액체를 포함하는 poly(vinylidene fluoride)-hexafluoropropyl copolymer (PVDF-HFP) 겔 분리막을 제조하고 여러 기체의 투과도를 측정하였다. 음이온이 tetrafluoroborate (BF4-)인 경우, 양이온의 탄소수가 증가할수록 이산화탄소의 투과도와 선택도가 모두 감소하였다. 양이온이 1-ethyl-3-methylimidazolium[ emim]인 경우, 음이온이 tetrafluoroborate (BF4-)일 때에 비해서 bis(trifluoromethane)sulfoneimide (Tf2N-)일 때 이산화탄소의 투과도가 2배 정도 증가하였으나, 이산화탄소/질소 및 이산화탄소/메탄의 선택도는 감소하였다. 하지만 이산화탄소/수소 선택도는 두 경우에 거의 비슷하였다.
It is well known that CO2 can be dissolved easily in imidazolium-based room temperature ionic liquids (RTILs). Because of the high CO2 solubility in RTILs, membranes containing RTILs can separate easily gas mixtures such as CO2/N2 and CO2/CH4. In this study, we prepared poly(vinylidene fluoride)-hexafluoropropyl copolymer (PVDF-HFP) gel membranes with several RTILs and measured permeabilities of several gases. When the anion of ionic liquids was tetrafluoroborate(BF4-), both CO2 permeability and selectivities decreased as the carbon number of the cation increased. When the cation of ionic liquids was 1-ethyl-3-methylimidazolium[emim], CO2 permeability of gel membranes containing bis(trifluoromethane) sulfoneimide(Tf2N-) anion was double compared to those containing tetrafluoroborate(BF4-) anion. However, CO2/N2 and CO2/CH4 selectivities of the Tf2N- case were decreased, whereas the H2 selectivity was almost the same for two cases.
  1. Henis JMS, Tripodi MK, Science, 220, 11 (1983)
  2. Abelson PH, Science, 244, 1421 (1989)
  3. Liu C, Martin CR, Nature, 352, 50 (1991)
  4. Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
  5. Anderson MR, Mattes BR, Reiss H, Kaner RB, Science, 252, 1412 (1991)
  6. Hong SU, Jin JH, Won J, Kang YS, Adv. Mater., 12(13), 968 (2000)
  7. Seo Y, Hong SU, Lee BS, Angew. Chem. Int. Ed., 42, 1145 (2003)
  8. Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ, Science, 318, 254 (2007)
  9. Ahn SH, Seo JA, Kim JH, Ko Y, Hong SU, J. Membr. Sci., 345(1-2), 128 (2009)
  10. Choi JI, Jung CH, Han SH, Park HB, Lee YM, J. Membr. Sci., 349(1-2), 358 (2010)
  11. Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB, Science, 339(6117), 303 (2013)
  12. Kim HW, Yoon HW, Yoon SM, Yoo BM, Ahn BK, Cho YH, Shin HJ, Yang H, Paik U, Kwon S, Choi JY, Park HB, Science, 342(6154), 91 (2013)
  13. Chi WS, Hong SU, Jung B, Kang SW, Kang YS, Kim JH, J. Membr. Sci., 443, 54 (2013)
  14. Freeman BD, Macromolecules, 32(2), 375 (1999)
  15. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300 (2004)
  16. Hou Y, Baltus RE, Ind. Eng. Chem. Res., 46(24), 8166 (2007)
  17. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD, Ind. Eng. Chem. Res., 48(6), 2739 (2009)
  18. Fortunato R, Afonso CAM, Reis MAM, Crespo JG, J. Membr. Sci., 242(1-2), 197 (2004)
  19. Conich J, Myers C, Pennfine H, Luebke D, J. Membr. Sci., 298(1-2), 41 (2007)
  20. Hong SU, Park D, Ko Y, Baek I, Chem. Commun., 7227 (2009)