Applied Chemistry for Engineering, Vol.25, No.6, 592-597, December, 2014
리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성
Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2
E-mail:
초록
본 연구에서는 리튬이차전지의 음극활물질로 graphite의 전기화학적 특성을 향상시키기 위하여 졸-겔 법에 의한 graphite/SiO2 복합소재를 제조하였다. 제조된 graphite/SiO2 합성물은 XRD, FE-SEM과 EDX를 사용하여 분석하였다. SiO2에 의해 표면 개질된 graphite는 SEI 층을 안정화시키는데 장점을 보여 주었다. Graphite/SiO2 전극을 작업 전극으로, 리튬메탈을 상대전극으로 하여 리튬이차전지의 전기화학 특성을 조사하였다. LiPF6 염과 EC/DMC 용매를 전해질로 사용하여 제조한 코인 셀의 전기화학적 거동은 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 평가하였다. Graphite/SiO2 전극을 사용한 리튬이차전지는 graphite 전극을 사용한 전지보다 우수한 특성을 보여주었으며, 0.1 C rate에서 465 mAh/g의 용량을 보여주었다. 또한 개질된 graphite 전극은 0.8 C rate에서 99%의 용량 보존율을 보여주었다.
The graphite/SiO2 composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite’s electrochemical characteristics. The prepared graphite/SiO2 composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/SiO2 as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes (LiPF6, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/SiO2 electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.
- Doh CH, Jin BS, Lim JH, Moon SI, Korean J. Chem. Eng., 19(5), 749 (2002)
- Xu B, Qian D, Wang Z, Meng YS, Mater. Sci. Eng., 73, 51 (2012)
- Zhang WJ, J. Power Sources, 196(1), 13 (2011)
- Fuchsbichler B, Stangl C, Kren H, Uhlig F, Koller S, J. Power Sources, 196(5), 2889 (2011)
- Fu LJ, Endo K, Sekine K, Takamura T, Wu YP, Wu HQ, J. Power Sources, 162(1), 663 (2006)
- Li B, Xu MQ, Li BZ, Liu YL, Yang L, Li WS, Hu SJ, Electrochim. Acta, 105, 1 (2013)
- Zhao HP, Ren JG, He XM, Li JJ, Jiang CY, Wan CR, Electrochim. Acta, 52(19), 6006 (2007)
- Guo KK, Pan QM, Fang SB, J. Power Sources, 111(2), 350 (2002)
- Lee ML, Li YH, Liao SC, Chen JM, Yeh JW, Shih HC, Electrochim. Acta, 112, 529 (2013)
- Yao L, Hou X, Hu S, Tang X, Liu X, Ru Q, J. Alloy. Compd, 585, 398 (2014)
- Guo HJ, Li XH, Xie J, Wang ZX, Peng WJ, Sun QM, Energy Conv. Manag., 51(2), 247 (2010)
- Zhang JX, Cao HQ, Tang XL, Fan WF, Peng GC, Qu MZ, J. Power Sources, 241, 619 (2013)
- Bai LZ, Zhao DL, Zhang TM, Xie WG, Zhang JM, Shen ZM, Electrochim. Acta, 107, 555 (2013)
- Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Xiao W, Gan L, Electrochim. Acta, 116, 230 (2014)
- Arumugam D, Paruthimal Kalaignan G, J. Electroanal. Chem., 624, 197 (2008)
- Sun Q, Zhang B, Fu ZW, Appl. Surf. Sci., 254(13), 3774 (2008)
- Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS, J. Power Sources, 196(23), 10240 (2011)
- Wang HY, Wang FM, J. Power Sources, 233, 1 (2013)
- Jian Z, Liu H, Kuang J, He Y, Shi L, Xiao H, Procedia Engineering, 27, 55 (2012)
- Fan YK, Wang JM, Tang Z, He WC, Zhang JQ, Electrochim. Acta, 52(11), 3870 (2007)
- Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS, J. Power Sources, 196(23), 10240 (2011)
- Wang HY, Wang FM, J. Power Sources, 233, 1 (2013)