화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.6, 592-597, December, 2014
리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성
Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2
E-mail:
초록
본 연구에서는 리튬이차전지의 음극활물질로 graphite의 전기화학적 특성을 향상시키기 위하여 졸-겔 법에 의한 graphite/SiO2 복합소재를 제조하였다. 제조된 graphite/SiO2 합성물은 XRD, FE-SEM과 EDX를 사용하여 분석하였다. SiO2에 의해 표면 개질된 graphite는 SEI 층을 안정화시키는데 장점을 보여 주었다. Graphite/SiO2 전극을 작업 전극으로, 리튬메탈을 상대전극으로 하여 리튬이차전지의 전기화학 특성을 조사하였다. LiPF6 염과 EC/DMC 용매를 전해질로 사용하여 제조한 코인 셀의 전기화학적 거동은 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 평가하였다. Graphite/SiO2 전극을 사용한 리튬이차전지는 graphite 전극을 사용한 전지보다 우수한 특성을 보여주었으며, 0.1 C rate에서 465 mAh/g의 용량을 보여주었다. 또한 개질된 graphite 전극은 0.8 C rate에서 99%의 용량 보존율을 보여주었다.
The graphite/SiO2 composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite’s electrochemical characteristics. The prepared graphite/SiO2 composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/SiO2 as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes (LiPF6, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/SiO2 electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.
  1. Doh CH, Jin BS, Lim JH, Moon SI, Korean J. Chem. Eng., 19(5), 749 (2002)
  2. Xu B, Qian D, Wang Z, Meng YS, Mater. Sci. Eng., 73, 51 (2012)
  3. Zhang WJ, J. Power Sources, 196(1), 13 (2011)
  4. Fuchsbichler B, Stangl C, Kren H, Uhlig F, Koller S, J. Power Sources, 196(5), 2889 (2011)
  5. Fu LJ, Endo K, Sekine K, Takamura T, Wu YP, Wu HQ, J. Power Sources, 162(1), 663 (2006)
  6. Li B, Xu MQ, Li BZ, Liu YL, Yang L, Li WS, Hu SJ, Electrochim. Acta, 105, 1 (2013)
  7. Zhao HP, Ren JG, He XM, Li JJ, Jiang CY, Wan CR, Electrochim. Acta, 52(19), 6006 (2007)
  8. Guo KK, Pan QM, Fang SB, J. Power Sources, 111(2), 350 (2002)
  9. Lee ML, Li YH, Liao SC, Chen JM, Yeh JW, Shih HC, Electrochim. Acta, 112, 529 (2013)
  10. Yao L, Hou X, Hu S, Tang X, Liu X, Ru Q, J. Alloy. Compd, 585, 398 (2014)
  11. Guo HJ, Li XH, Xie J, Wang ZX, Peng WJ, Sun QM, Energy Conv. Manag., 51(2), 247 (2010)
  12. Zhang JX, Cao HQ, Tang XL, Fan WF, Peng GC, Qu MZ, J. Power Sources, 241, 619 (2013)
  13. Bai LZ, Zhao DL, Zhang TM, Xie WG, Zhang JM, Shen ZM, Electrochim. Acta, 107, 555 (2013)
  14. Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Xiao W, Gan L, Electrochim. Acta, 116, 230 (2014)
  15. Arumugam D, Paruthimal Kalaignan G, J. Electroanal. Chem., 624, 197 (2008)
  16. Sun Q, Zhang B, Fu ZW, Appl. Surf. Sci., 254(13), 3774 (2008)
  17. Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS, J. Power Sources, 196(23), 10240 (2011)
  18. Wang HY, Wang FM, J. Power Sources, 233, 1 (2013)
  19. Jian Z, Liu H, Kuang J, He Y, Shi L, Xiao H, Procedia Engineering, 27, 55 (2012)
  20. Fan YK, Wang JM, Tang Z, He WC, Zhang JQ, Electrochim. Acta, 52(11), 3870 (2007)
  21. Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS, J. Power Sources, 196(23), 10240 (2011)
  22. Wang HY, Wang FM, J. Power Sources, 233, 1 (2013)