화학공학소재연구정보센터
Clean Technology, Vol.20, No.4, 367-374, December, 2014
킬레이트 착화학반응에 의한 음식물폐기물 혐기소화가스 중 황화수소의 제거와 황회수 및 경제성평가
Reuse of Hydrogen Sulfide by Ferric Chelate Reaction of Food Waste Anaerobic Digestion Gas, Sulfur Recovery and its Economic Evaluation
E-mail:
초록
0.1~1 M의 철킬레이트 화합물을 이용한 화학흡수반응에 의한 바이오가스내 황화수소제거를 위한 실험이 수행되었다. 철킬레이트 화합물을 이용한 황화수소제거는 철킬레이트의 최적산화반응을 통해 이루어진다. 바이오가스에 존재하는 황화수소는 킬레이트농도 및 pH 등의 공정조건에 따라 효과적으로 제거될 뿐만 아니라 철킬레이트 산화반응에 의해 황화수소내 존재하는 황성분을 생성시킨다. Fe-EDTA의 농도가 증가하면 철킬레이트 화합물의 착물이 안정되어 황생성의 전환이 증가하였다. 또한 철킬레이트화합물의 안정도는 pH에 따라 변하는 중요한 인자이고 pH 9에서 최적반응을 나타냈다.
Several experiments have been done to investigate the removal of hydrogen sulfide (H2S) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1-1 M Fe/EDTA solution. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by chelate. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed with minor potential for further pollution. As the Fe-EDTA concentration increased, the conversion rate of hydrogen sulfide increased because of the high stability of Fe-EDTA complex. pH as an important environmental factor was 9.0 for the stability of chemical complex in the oxidation of hydrogen sulfide.
  1. Ishikawa S, Hoshiba S, Hinata T, Hishinuma T, Morita S, Int. Congress Series, 1293, 230 (2006)
  2. Nam J, Youn Y, Lee Y, Soh K, Kim C, Kor. J. Environ. Agric. Soc., 27(4), 406 (2008)
  3. Lee S, “Development of Ecofriendly Ferric Chelate Catalyst,” Research Report, No.1, May (2009)
  4. Cha J, “Oxidation of Hydrogen Sulfide Using Ferric Chelate Compounds,” Ph. D. Dissertation, Chosun University, Kwangju (1997)
  5. Demmink JF, Beenackers AACM, Ind. Eng. Chem. Res., 37(4), 1444 (1998)
  6. Yoo S, Lee E, J. Kor. Soc. Environ. Eng., 29, 820 (2007)
  7. Iliuta I, Larachi F, Chem. Eng. Sci., 58(23-24), 5305 (2003)
  8. Park Y, “Kinetic Study of Carbon Dioxide Absorption Using Aminoacid and Nonaqueous Amine Solution,” Korean J. Biotechnol. Bioeng, to be submitted (2014)
  9. Park Y, Kor. J. Biotechnol. Bioeng., 25, 421 (2010)
  10. Park Y, Kor. J. Biotechnol. Bioeng., 22, 151 (2007)
  11. Maat H, Hogendoorn JA, Versteeg GF, Sep. Purif. Technol., 43(3), 183 (2005)
  12. ter Maat H, Hogendoorn JA, Versteeg GF, Sep. Purif. Technol., 43(3), 199 (2005)
  13. Soda E, Han Z, Matzuyama H, AIChE J., 31, 1297 (1985)
  14. Oh K, Choi W, Lee S, Lee J, J. Kor. Soc. Env. Eng., 24, 985 (2003)
  15. Frare LM, Vieira MG, Silva MG, Gimenes M, Environ. Progress Sustainable Energy, 29, 34 (2010)
  16. Lee B, Korean Patent No. 10-0821664 (2008)
  17. Jin SG, Cha JM, Lee IW, Yoon SJ, Kim SW, J. Korean Ind. Eng. Chem., 7(1), 177 (1996)