화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.22, 306-316, February, 2015
Rate-based simulation and comparison of various promoters for CO2 capture in industrial DEA-promoted potassium carbonate absorption unit
E-mail:
Diethanolamine (DEA)-promoted potassium carbonate process for CO2 removal is modelled using ratebased approach and Electrolyte NRTLmodel. Acceptable agreements between the simulation results and the experimental data are achieved. The effectiveness of monoethanolamine (MEA), diglycolamine (DGA), diisopropanolamine (DIPA), and methyldiethanolamine (MDEA) as promoters are investigated. MEA shows promising performance for CO2 removal. The CO2 absorptions by DGA and DIPA are good enough, but their prices are higher than MEA and DEA. The CO2 absorption byMDEA is not significant and it cannot be used as a promoter. A parametric study is performed to assess the effects of important process parameters.
  1. Tan LS, Shariff AM, Lau KK, Bustam MA, J. Ind. Eng. Chem., 18(6), 1874 (2012)
  2. Kohl A, Nielson R, Gas Purification, Gulf Publishing Company, Houston, TX, 1997.
  3. Savage DW, Sartori G, Astarita G, J. Chem. Soc.-FaradayDiscuss., 77, 17 (1984)
  4. Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105 (2012)
  5. Rahimpour MR, Kashkooli AZ, Chem. Eng. Process., 43(7), 857 (2004)
  6. Todinca CT, Proll A, Cata A, in: Valentin P, Serban AP(Eds.), Absorption with Chemical Reaction: Evaluation of Rate Promoters Effect on CO2 Absorption in Hot Potassium Carbonate Solutions, Elsevier, 2007, p. 1065.
  7. Thiele R, Faber R, Repke JU, Thielert H, Wozny G, Chem. Eng. Res. Des., 85(A1), 74 (2007)
  8. Taylor R, Krishna R, Multicomponent Mass Transfer, Wiley, 1993.
  9. Afkhamipour M, Mofarahi M, Int. J. Greenh. Gas Con., 15, 186 (2013)
  10. Seader JD, Henley EJ, Roper DK, Separation Process Principles, John Wiley & Sons, 2010.
  11. Krishnamurthy R, Taylor R, Can. J. Chem. Eng., 64, 96 (1986)
  12. Krishnamurthy R, Taylor R, Ind. Eng. Chem. Process Des. Dev., 24, 513 (1985)
  13. Aspen Technology, Aspen Plus Reference Manual. Aspen Plus 11.1 Unit Operation Models, Cambridge, USA, 2001.
  14. Kenig EY, Schneider R, Gorak A, Chem. Eng. Sci., 56(2), 343 (2001)
  15. Grester JA, Hill AB, Hochgraf NN, Robinson DG, Tray Efficiencies in Distillation Columns, 1958.
  16. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, J. Wiley, 2007.
  17. Shrier AL, Danckwerts PV, Chem. Eng. Sci., 8, 415 (1969)
  18. Astarita G, Savage DW, Longo JM, Chem. Eng. Sci., 36, 8 (1981)
  19. Tseng PC, Ho WS, Savage DW, AIChE J., 34, 922 (1988)
  20. Austgen DM, Rochelle GT, Peng X, Ind. Eng. Chem. Res., 28, 1060 (1989)
  21. Kennard ML, Meisen A, Ind. Eng. Chem. Fundam., 24, 129 (1985)
  22. Astarita G, Savage DW, Bisio A, Gas Treating with Chemical Solvents, 1983.
  23. Aspen Technology, Aspen Plus Reference Manual. Aspen Physical Property System. Physical Property Data 11.1, Cambridge, USA, 2001.
  24. Austgen DM, Rochelle GT, Chen CC, Ind. Eng. Chem. Res., 30, 543 (1991)
  25. Jou FY, Carroll JJ, Mather AE, Otto FD, J. Chem. Eng. Data, 38, 75 (1993)
  26. Jou FY, Carroll JJ, Mather AE, Otto FD, Can. J. Chem. Eng., 71, 264 (1993)
  27. Barth D, Tondre C, Delpuech JJ, Int. J. Chem. Kinet., 18, 445 (1986)
  28. Blauwhoff PMM, Kamphuis B, Swaaij WPMW, Westerterp KR, Chem. Eng. Process., 19, 1 (1985)
  29. Pinsent BRW, Pearson L, Roughton FJW, J. Chem. Soc.-Faraday Trans., 52, 1512 (1956)
  30. Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res., 35(4), 1107 (1996)
  31. Hikita H, Asai S, Ishikawa H, Honda M, Chem. Eng. J., 13, 7 (1977)
  32. Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 45(8), 2608 (2006)
  33. Pacheco MA, Kaganoi S, Rochelle GT, Chem. Eng. Sci., 55(21), 5125 (2000)
  34. Austgen DM, A model of vapour-liquid equilibria for acid gas-alkanolamine-water systems, University of Texas at Austin, 1989.
  35. Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 45(8), 2608 (2006)
  36. Hilliard M, University of Texas at Austin, Texas, 2005.
  37. Tosh JS, Field JH, Benson HE, Haynes WP, Equilibrium Study of the System Potassium Carbonate, Potassium Bicarbonate, Carbon Dioxide, and Water, 1959, p. 27.
  38. Jou FY, Mather AE, Otto FD, Can. J. Chem. Eng., 73(1), 140 (1995)
  39. Isaacs EE, Otto FD, Mather AE, J. Chem. Eng. Data, 22, 71 (1977)
  40. Martin JL, Otto FD, Mather AE, J. Chem. Eng. Data, 23 (1978)
  41. Maddox RN, Elizondo EM, in Equilibrium Solubility of Carbon Dioxide or Hydrogen Sulfide in Aqueous Solutions of Diethanolamine at Low Partial Pressures, 1989.
  42. Kamps APS, Balaban A, Jodecke M, Kuranov G, Smirnova NA, Maurer G, Ind. Eng. Chem. Res., 40(2), 696 (2001)
  43. Aspen Technology, Aspen Plus Reference Manual. Aspen Physical Property System. Physical Property Methods and Models 11.1, Cambridge, USA, 2001.
  44. Choi WJ, Min BM, Shon BH, Seo JB, Oh KJ, J. Ind. Eng. Chem., 15(5), 635 (2009)
  45. Karaj Petrochemical Complex, (2010).
  46. Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT, Ind. Eng. Chem. Res., 48(20), 9233 (2009)