화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.22, 368-372, February, 2015
Application of mercaptoacetic acid as a capping agent, solvent, and precursor to fabricate In2S3 nanostructures
E-mail:
In this work, In2S3 nanostructures have been successfully prepared via a simple wet chemistrymethod at room temperature. By using mercaptoacetic acid (TGA) as a capping agent, solvent, and sulfide precursor with different concentrations, In2S3 nanostructures were obtained. The effects of reaction time, reaction temperature, and concentration of precursor on the morphology and the particle size was also studied. The as-prepared In2S3nanoparticles were characterized extensively by techniques like XRD, TEM, SEM, PL, and EDX. Photoluminescence study of the In2S3 nanoparticles displayed quantum confinement behavior with band gap of 2.74 eV.
  1. Sirimanne PM, Sonoyama N, Sakata T, Chem. Phys. Lett., 350(3-4), 211 (2001)
  2. Caoa G, Zhaob Y, Wu Z, J. Alloy. Compd., 472, 325 (2009)
  3. Amiri O, Emadi H, Hosseinpour-Mashkani SM, Sabet M, Rad MM, RSC Adv., 4, 10990 (2014)
  4. Nomura R, Inazawa S, Kanaya K, Matsuda H, Appl. Organomet. Chem., 3, 195 (1989)
  5. Chen XY, Zhang ZJ, Zhang XF, Liu JW, Qian YT, Chem. Phys. Lett., 407(4-6), 482 (2005)
  6. Dalas E, Kobotiatis L, J. Mater. Sci., 28(24), 6595 (1993)
  7. Kamoun N, Belgacem S, Amlouk M, Bennaceur R, Bonnet J, Touhari F, Nouaoura M, Lassabatere L, J. Appl. Phys., 89, 2766 (2001)
  8. Sheikhi-abadi PG, Salavati-Niasari M, Davar F, Superlattices Microstruct., 53, 76 (2013)
  9. Dalas E, Sakkopoulos S, Vitoratos E, Maroulis G, J. Mater. Sci., 28, 5456 (1993)
  10. Diehl R, Nitsche R, J. Cryst. Growth, 28, 306 (1975)
  11. Braunger D, Hariskos D, Waltre T, Schock HW, J. Sol. Energy Mater. Sol. Cells, 40, 97 (1996)
  12. Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote RJ, Thompson ME, Zhou CW, J. Am. Chem. Soc., 127(36), 12484 (2005)
  13. Gordon RG, Mater. Res. Bull., 25, 52 (2000)
  14. Gopchandran KG, Joseph B, Abraham JT, Koshy P, Vaidyan VK, Vacuum, 48, 547 (1997)
  15. Zhang W, Ma DK, Huang Z, Tang Q, Xie Q, Qian YT, J. Nanosci. Nanotechnol, 5, 776 (2005)
  16. Gorai S, Guha P, Ganguli D, Chaudhuri S, Mater. Chem. Phys., 82(3), 974 (2003)
  17. Xiong YJ, Xie Y, Du GA, Tian XB, J. Mater. Chem., 12, 98 (2002)
  18. Afzaal M, Malik MA, O’Brien P, Chem. Commun., 224, 334 (2004)
  19. Xiong YJ, Xie Y, Du GA, Tian XB, Qian YT, J. Solid State Chem., 166 (2002)
  20. Yu SH, Shu L, Wu YS, Qian YT, Xie Y, Yang L, Mater. Res. Bull., 33(8), 1207 (1998)
  21. Avivi S, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A, Chem. Mater., 13, 2195 (2001)
  22. Patra CR, Patra S, Gabashvili A, Mastai Y, Gedanken Y, Palchik A, Slifkin MA, J. Nanosci. Nanotechnol., 6, 845 (2006)
  23. Liu Y, Zhang M, Gao YQ, Zhang R, Qian YT, Mater. Chem. Phys., 101(2-3), 362 (2007)
  24. Chen SJ, Zhou JH, Chen XT, Li J, Li LH, Hong JM, Xue ZL, You XZ, Chem. Phys. Lett., 375(1-2), 185 (2003)
  25. Datta A, Panda SK, Gorai S, Ganguli D, Chaudhuri S, Mater. Res. Bull., 43(4), 983 (2008)
  26. Roy M, Mandal BP, Dutta DP, Tyagi AK, J. Scr. Mater., 63, 93 (2010)
  27. Lokhande CD, Ennaoui A, Patil PS, Giersig M, Diesner K, Muller M, Tributsch H, Thin Solid Films, 340(1-2), 18 (1999)
  28. Kumta PK, Phule PP, Risbud SH, J. Mater. Lett., 5(10), 401 (1987)
  29. Chen LY, Zhang ZD, Wang WZ, J. Phys. Chem., 112, 4117 (2008)
  30. Fu XL, Wang XX, Chen ZX, Zhang ZZ, Li ZH, Leung DYC, Wu L, Fu XZ, Appl. Catal. B: Environ., 95(3-4), 393 (2010)
  31. Mousavi-Kamazani M, Salavati-Niasari M, Emadi H, Mater. Res. Bull., 47(12), 3983 (2012)
  32. Ning JJ, Men KK, Xiao GJ, Zhao LY, Wang L, Liu BB, Zou B, J. Colloid Interface Sci., 347(2), 172 (2010)