Journal of Industrial and Engineering Chemistry, Vol.22, 34-40, February, 2015
Synthesis, characterization and stability of Cu2O nanoparticles produced via supersaturation method considering operational parameters effect
E-mail:
Cuprous oxide (Cu2O) nanoparticles have been successfully synthesized using copper acetate as precursor via supersaturation theory as a facile rout. Synthesis parameters, such as the reducing agent concentration, reaction temperature, reaction time, type of the reducing agent and rate of adding reducing agent were investigated. The experimental results indicated that size of the Cu2O nanoparticles is dependent on the above mentioned parameters. The Cu2O samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and also by ultra violet visible spectroscopy (UV.vis). Results showed that temperature has unique influence on to the fabrication of Cu2O nanoparticles which illustrate the higher the temperature of the synthesis the smaller the particles would be. Rate of reduction was specified as an influential factor in determining the particle size distribution. Particles with crystallite size of 74.01 nm were obtained among this study.
- Rioux RM (Ed.), Model Systems in Catalysis: Single Crystals to Supported Enzyme Mimics, Springer, New York, 2010.
- Rodriguez JA (Ed.), Synthesis, Properties and Applications of Oxide Nanomaterials, Wiley-VCH, Weinheim, 2007.
- Mehranpour H, Askari M, Ghamsari MS, Farzalibeik H, J. Nanomater, 1, 1 (2010)
- Finney EE, Finke RG, J. Colloid Interface Sci., 317(2), 351 (2008)
- Delmon B, in: Ertl G, Knozinger H, Weitkamp J (Eds.), Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 1997, pp. 264-277.
- Kung HH, Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier, Amsterdam, 1989.
- Wang XQ, Hanson JC, Frenkel AI, Kim JY, Rodriguez JA, J. Phys. Chem. B, 108(36), 13667 (2004)
- Musa AO, Akomolafe T, Carter MJ, Sol. Energy Mater. Sol. Cells, 51(3), 305 (1998)
- Zhang JT, Liu JF, Peng Q, Wang X, Li Y, Chem. Mater., 18, 867 (2006)
- Zhou W, Zhang Y, Li X, Yuan S, Jin Z, Xu J, Li Y, J. Phys. Chem., 109, 6963 (2005)
- Huang WC, Lyu LM, Yang YC, Huang MH, J. Am. Chem. Soc., 134(2), 1261 (2012)
- Poizot P, Laruelle S, Grugeon S, Dupont L, Taracon JM, Nature, 407, 496 (2000)
- Lee YJ, Kim S, Park SH, Park H, Huh YD, Mater. Lett., 65, 818 (2011)
- Zhang L, Wang H, J. Phys. Chem. C, 115, 18479 (2011)
- Lu CH, Qi LM, Yang JH, Wang XY, Zhang DY, Xie JL, Ma JM, Adv. Mater., 17(21), 2562 (2005)
- Kuo CH, Huang MH, J. Am. Chem. Soc., 130(38), 12815 (2008)
- Orel AC, Anzlovar A, Drazic G, Zigon M, Cryst. Growth. Des., 7, 453 (2007)
- Grez P, Herrera F, Riveros G, Henrıquez R, Ramırez A, Munoz E, Dalchiele EA, Celedon C, Schrebler R, Mater. Lett., 92, 413 (2013)
- Bao H, Zhang W, Shang D, Hua Q, Ma Y, Jiang Z, J. Phys. Chem., 114, 6676 (2010)
- Kuo CH, Chen CH, Huang MH, Adv. Funct. Mater., 17(18), 3773 (2007)
- Xu Y, Wang H, Yu Y, Tian L, Zhao W, Zhang B, J. Phys. Chem., 115, 15288 (2011)
- Zhang Y, Deng B, Zhang T, Gao D, Xu AW, J. Phys. Chem., 114, 5073 (2010)
- Zhang ZL, Che HW, Wang YL, Gao JJ, Zhao LR, She XL, Sun J, Gunawan P, Zhong ZY, Su FB, Ind. Eng. Chem. Res., 51(3), 1264 (2012)
- Ko E, Choi J, Okamoto K, Tak Y, Lee J, ChemphysChem, 7, 1505 (2006)
- Gou L, Murphy CJ, Nano Lett., 3, 231 (2003)
- Manna S, Das K, De SK, ACS Appl. Mater. Interfaces, 2, 1536 (2010)
- Kuo CH, Huang MH, Nano Today, 5(2), 106 (2010)
- Korzhavyi PA, Johansson B, Literature Review on the Properties of Cuprous Oxide Cu2O and the Process of Copper Oxidation, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden); Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 2011.
- Zahmakıran M, Ozkar S, Kodaira T, Shiomi T, Mater. Lett., 63, 400 (2009)
- Huang L, Peng F, Yu H, Wang H, Solid. State. Sci., 11, 129 (2009)
- Zhang H, Shen C, Chen S, Xu Z, Liu F, Li J, Gao H, Nanotechnology, 16, 267 (2005)
- Sekhar H, Rao DN, J. Nanopart. Res., 14, 965 (2012)
- Kooti M, Matouri L, Scientia Iranica, 17, 73 (2010)
- Gao G, Wu H, He R, Cui D, Corrosion Sci., 52, 2804 (2010)
- Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M, Dig. J. Nanomater. Biostruct., 7, 833 (2012)
- Bai YK, Yang TF, Cu Q, Cheng GA, Zheng RT, Powder Technol., 227, 35 (2012)
- Luo F, Wu D, Gao L, Lian SY, Wang EB, Kang ZH, Lan Y, Xu L, J. Cryst. Growth, 285(4), 534 (2005)
- Cadena GJ, Comini E, Ferroni M, Sberveglieri G, Mater. Lett., 64, 469 (2009)
- He P, Shen XH, Gao HC, J. Colloid Interface Sci., 284(2), 510 (2005)
- Poot AGV, Gattorno GR, Dominguez OES, Diaz RTP, Pesqueira M, Oskam G, Nanoscale, 2, 2710 (2010)
- Ma D, Liu HB, Yang HB, Fu WY, Zhang YY, Yuan MX, Sun P, Zhou XM, Mater. Chem. Phys., 116(2-3), 458 (2009)
- Viswanatha R, Sarma DD, Chem. Eur. J., 12, 180 (2006)