화학공학소재연구정보센터
Bioresource Technology, Vol.188, 169-176, 2015
Lipid metabolism in response to individual short chain fatty acids during mixotrophic mode of microalgal cultivation: Influence on biodiesel saturation and protein profile
Critical influence of different short chain fatty acids as organic carbon source, during growth (GP) and nutrient stress lipogenic phase (NSLP) was investigated on biomass and lipid productivity, in mixotrophic fed-batch microalgae cultivation. Nutrient deprivation induced physiological stress stimulated highest lipid productivity with acetate (total/neutral lipids, 35/17) with saturation index of 80.53% by the end of NSLP followed by butyrate (12/7%; 78%). Biomass growth followed the order of acetate (2.23 g/l) >buty-rate (0.99 g/l) >propionate (0.77 g/l). VFA removal (as COD) was maximum with acetate (87%) followed by butyrate (55.09%) and propionate (10.60%). Palmitic acid was the most dominant fatty acid found in the fatty acid composition of all variants and butyrate fed system yielded a maximum of 44% palmitic acid. Protein profiling illustrated prominence of acetyl CoA-synthetase activity in acetate system. Thus, fatty acids provide a promising alternative feedstock for biodiesel production with integrated microalgae-biorefinery. (C) 2015 Elsevier Ltd. All rights reserved.