Korean Chemical Engineering Research, Vol.54, No.3, 394-403, June, 2016
매체 순환식 수소제조공정에 적합한 Fe2O3/ZrO2 산소전달입자에 구리 산화물 첨가가 미치는 영향에 관한 연구
The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping
E-mail:
초록
매체 순환식 수소제조공정은 직접 고순도의 수소를 생산하는 동시에 CO2 포집 비용을 최소화할 수 있는 고효율/친환경적인 공정이다. 본 공정은 레독스 반응을 통하여 산소를 전달하고 이때 철 산화물계 산소전달입자를 이용하게 된다. 구리 산화물이 첨가된 철-구리 산화물계 산소전달입자는 반응성 향상이 보고되어 왔으나 철 산화물과 구리 산화물간 상호작용에 대한 이해가 부족한 실정이다. 본 연구에서는 여러 기기 분석법(SEM/EDX, XRD, BET, TPR, XPS, TGA)을 통하여 철-구리 산화물계 산소전달입자의 레독스 반응성 향상을 지배하는 주요인을 연구하였다. 첨가된 구리산화물은 철 산화물 성장 억제제 역할 뿐만 아니라 화학적 환경 변화를 일으키는 화학적 촉매제(chemical promoter) 역할도 하는 것이 발견되었다. 철-구리 산화물계 산소전달입자의 우수한 환원 반응성은 구리 산화물의 도입으로 Fe2+ 농도 증가 및 표면 특성 변화 때문이며, 우수한 물분해 특성은 산화 과정에서 일어나는 철 산화물의 응집을 구리 산화물이 억제시킨 것으로 판단되었다.
H2 production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated CO2. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between Fe2O3 and CuO are still lacking. In this study, we studied the effect of dopant of CuO to Fe2O3/ZrO2 particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of Fe2+ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped Fe2O3/ZrO2 particle also showed the improved reactivity in the steam oxidation compared to Fe2O3/ZrO2 particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.
- Lee JK, Kang KS, Cho WC, Jeong SU, Bae KK, Park BH, J. Comput. Theor. Nanosci., 10(8), 1722 (2013)
- Kang KS, Kim CH, Bae KK, Cho WC, Kim WJ, Kim YH, Kim SH, Park CS, Int. J. Hydrog. Energy, 35(2), 568 (2010)
- Kang KS, Kim CH, Cho WC, Bae KK, Kim SH, Park CS, Int. J. Hydrog. Energy, 34(10), 4283 (2009)
- Cho WC, Park CS, Kang KS, Kim CH, Bae KK, Nucl. Eng. Des., 239(3), 501 (2009)
- Ryu HJ, Bae DH, Jo SH, Jin GT, Korean Chem. Eng. Res., 42(1), 107 (2004)
- Ryu HJ, Jin GT, Jo SH, Bae DH, Theor. Appl. Chem. Eng., 12(2), 259 (2006)
- Ryu HJ, Seo Y, Jin GT, “Natural Gas Combustion Characteristics in a Chemical-Looping Combustor with Three Different Oxygen Carrier Particles, ” 10th Asian Conference on Fluidized Bed and Three-Phase Reactors, Busan, Korea, November 26-29, 174-179(2006).
- Cho WC, Lee DY, Seo MW, Kim SD, Kang K, Bae KK, Kim CH, Jeong S, Park CS, Appl. Energy, 113, 1667 (2014)
- Mattisson T, Lyngfelt A, “Capture of CO2 Using Chemicallooping Combustion, ” Scandinavian-Nordic Section of Combustion Institute, 163-168(2001).
- Kang KS, Kim CH, Bae KK, Cho WC, Kim SH, Park CS, Int. J. Hydrog. Energy, 35(22), 12246 (2010)
- Kang KS, Kim CH, Bae KK, Cho WC, Jeong SU, Kim SH, Park CS, Int. J. Hydrog. Energy, 37(4), 3251 (2012)
- Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM, Energy Fuels, 18(2), 371 (2004)
- Kang KS, Kim CH, Cho WC, Bae KK, Woo SW, Park CS, Int. J. Hydrog. Energy, 33(17), 4560 (2008)
- Cha KS, Lee DH, Jo WJ, Lee YS, Kim YH, Transactions of the Korean Hydrogen and New Energy Society, 18(2), 140 (2007)
- Siriwardane R, Tian HJ, Simonyi T, Poston J, Fuel, 108, 319 (2013)
- Briks R, Gerald HM, Rederick SP, “Introduction to the High Temperature Oxidation of Metals, ” Cambridge University Press, UK, (2006).
- Cho WC, Kim CG, Jeong SU, Park CS, Kang KS, Lee DY, Kim SD, Ind. Eng. Chem. Res., 54(12), 3091 (2015)
- Kidambi PR, Cleeton JP, Scott SA, Dennis JS, Bohn CD, Energy Fuels, 26(1), 603 (2011)
- Salje G, Feller-Kniepmeier M, J. Appl. Phys., 48(5), 1833 (1977)
- Huang CL, Lin RJ, Tzeng JF, Mater. Chem. Phys., 97(2), 256 (2006)
- Hsu CH, Shih CF, Yu CC, Tung HH, Chung MH, J. Alloy. Compd., 461(1), 355 (2008)
- Zhao YJ, Zhao YZ, Huang RX, Liu RZ, Zhou HP, J. Am. Ceram. Soc., 94(3), 656 (2011)
- Lin D, Kwok KW, Chan HLW, Appl. Phys. A-Mater. Sci. Process., 88(2), 359 (2007)
- Sun ZC, Zhou Q, Fan LS, Langmuir, 29(40), 12520 (2013)
- Galinsky NL, Shafiefarhood A, Chen YG, Neal L, Li FX, Appl. Catal. B: Environ., 164, 371 (2015)
- Galinsky NL, Huang Y, Shafiefarhood A, Li F, ACS Sustain. Chem. Eng., 1(3), 364 (2013)
- Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS, Surf. Interface Anal., 36(12), 1564 (2004)
- Zhan S, Qiu M, Yang S, Zhu D, Yu H, Li Y, J. Mater. Chem. A, 2(48), 20486 (2014)
- Peng Y, Li J, Chen L, Che J, Han J, Zhang H, Hanl W, Environ. Sci. Technol., 46(5), 2864 (2012)
- Grzybek T, Klinik J, Papp H, Baerns M, Chem. Eng. Technol., 13(1), 156 (1990)
- Li SZ, Krishnamoorthy S, Li AW, Meitzner GD, Iglesia E, J. Catal., 206(2), 202 (2002)
- Obrien RJ, Xu LG, Spicer RL, Bao SQ, Milburn DR, Davis BH, Catal. Today, 36(3), 325 (1997)
- Li K, Haneda M, Gu Z, Wang H, Ozawa M, Mater. Lett., 93, 129 (2013)
- Khan A, Chen P, Boolchand P, Smirniotis PG, J. Catal., 253(1), 91 (2008)
- Chen YX, Loul LP, Jiang XY, Zhou RX, Zheng XM, Indian J. Chem., 42, 460 (2003)
- Zou H, Dong X, Lin W, J. Nat. Gas Chem., 14(1), 29 (2005)
- Mendiara T, Abad A, de Diego LF, Garcia-Labiano F, Gayan P, Adanez J, Energy Fuels, 26(2), 1420 (2012)
- Adanez J, Cuadrat A, Abad A, Gayan P, de Diego LF, Garcia-Labiano F, Energy Fuels, 24(2), 1402 (2010)
- Tretyakov YD, Komarov VF, Prosvirnina NA, Kutsenok IB, J. Solid State Chem., 5(2), 157 (1972)
- He F, Li F, Energ. Environ. Sci., 8(2), 535 (2015)
- Lynch ME, Yang L, Qin W, Choi JJ, Liu M, Blinn K, Liu M, Energy. Environ., 4(6), 2249 (2011)
- Go KS, Son SR, Kim SD, Int. J. Hydrog. Energy, 33(21), 5986 (2008)