Clean Technology, Vol.22, No.3, 196-202, September, 2016
Ceria 촉매상에서 탈수가 DMC 합성에 미치는 영향
Effect of Dehydration on DMC Synthesis over Ceria Catalysts
E-mail:
초록
DMC (dimethyl carbonate)를 합성하기 위하여 ceria 계열의 촉매를 이용하여 반응 조건을 확인하는 연구를 수행하였다. 촉매의 합성 조건을 찾기 위하여 소성 온도와 Cu(II)의 함량을 조절하였고, 완성된 촉매는 NH3-TPD를 이용하여 반응성(산점)을 확인하였다. DMC를 합성하기 위하여, 산화카르보닐화법(oxidative carbonylation, 일산화탄소와 산소를 메탄올과 반응)과 직접합성법(direct synthesis, 이산화탄소를 메탄올과 반응)을 적용하였다. 르샤틀리에의 원리에 따라, 반응 중 생성되는 물을 제거하여 반응성(메탄올 전환율)을 향상시키고자 하였으며, 이를 위해 화학적 탈수제(chemical dehydration agent)인 2-cyanopyridine를 사용하였다. 화학적 탈수 반응을 산화카르보닐화법에 적용하였을 경우, 메탄올 전환율은 15.1%에서 38.7%, DMC 선택도는 0%에서 98.8%까지 향상되었다. 이를 직접합성법에 적용하였을 경우, 메탄올 전환율은 1.0%에서 77.8%, DMC 선택도는 41.2%에서 100.0%까지 향상되었다.
In this study, ceria- based catalysts were prepared for dimethyl carbonate (DMC) synthesis and reaction conditions were evaluated for finding the optimal reaction route. In order to find optimal catalysts for DMC synthesis, calcination temperature and Cu(II) impregnation amount were evaluated. The oxidative carbonylation using methanol, carbon monoxide and oxygen and the direct synthesis using methanol and carbon dioxide were introduced for producing DMC. Following the law of Le Chatelier, the dehydration reaction was applied for enhancing the reactivity (methanol conversion) as removing water during the reaction. 2-cyanopyridine, as a chemical dehydration agent, was used. In the case of the oxidative carbonylation, methanol conversion rate increased from 15.1% to 38.7% and the DMC selectivity increased from 0% to 98.8%. In the case of the direct synthesis, methanol conversion rate increased from 1.0% to 77.8% and the DMC selectivity increased from 41.2% to 100.0%.
- Ren J, Guo C, Yang L, Li Z, Chin. J. Catal., 34, 1734 (2013)
- Itoh H, Watanabe Y, Mori K, Umino H, The Royal Soc. Chem., 5, 558 (2003)
- Nam JK, Cho DH, Suh JK, Kim SB, Korean Chem. Eng. Res., 49(5), 530 (2011)
- Park JS, Suh YW, Park TJ, Suh DJ, Clean Technol., 12(3), 160 (2008)
- Jung KT, Shul YG, Bell AT, Kim HJ, J. Korean Ind. Eng. Chem., 12(7), 814 (2001)
- Wada S, Oka K, Watanabe K, Izumi Y, Frontiers in Chem., 1(8), 1 (2013)
- Yoo KS, Lee BH, J. Korean Ind. Eng. Chem., 20(3), 313 (2009)
- Bourja L, Bakiz B, Benlhachemi A, Ezahri M, Villain S, Gavarri JR, J. Taibah Univ. Sci., 4, 1 (2010)
- Lee HJ, Park S, Jung JC, Song IK, Korean J. Chem. Eng., 28(7), 1518 (2011)
- La KW, Jung JC, Kim H, Baeck SH, Song IK, J. Mol. Catal. A-Chem., 269(1-2), 41 (2007)
- Bansode A, Urakawa A, ACS Catal., 4, 3877 (2014)
- Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K, J. Catal., 318, 95 (2014)