Polymer(Korea), Vol.40, No.6, 933-940, November, 2016
술폰화된 뱀부차콜-키토산 혼성체의 제조와 천연고무 강화에의 응용
Preparation of Sulfonated Bamboo Charcoal-Chitosan (sBC-CS) Hybrid and Its Application in the Reinforcement of Natural Rubber
E-mail:
초록
술폰화된 뱀부차콜-키토산(sulfonated bamboo charcol-chitosan, sBC-CS) 혼성체가 천연고무 보강을 위한 바이오고분자를 개발하기 위하여 적용되었다. 공중합은 키토산과 술폰화 반응 방법에 의해 술폰화된 뱀부차콜과 함께 수행되었다. 얻어진 sBC-CS는 FTIR, X-ray 회절, 분산속도 분석, field-emission electron microscopy 및 열무게 분석법에 의하여 분석되었다. 순수한 키토산과 비교하여, sBC-CS의 더 좋은 열안정성이 관찰되었다. 또한 sBC-CS 혼성체로 보강된 천연고무 복합체가 제조되었고, 황이 가교제로 사용되었다. 가황된 복합체의 기계적 물성이 측정되었는데, 순수한 키토산으로 충전된 천연고무 복합체와 비교할 때 sC-CS로 보강된 천연고무 복합체가 개선된 기계적 물성을 보여서, 이 물질이 중요한 고무 보강재임을 나타내었다.
A sulfonated bamboo charcoal-chitosan (sBC-CS) hybrid was applied to develop a biopolymer for natural rubber reinforcements. The copolymerization was conducted with chitosan (CS) and sulfonated bamboo charcoal by a sulfonation reaction method. The obtained sBC-CS was characterized by FTIR, X-ray diffraction, dispersion rate analysis, field-emission electron microscopy, and thermal gravimetric analysis. In comparison to pure chitosan, a greater thermal stability of sBC-CS was observed. In addition, sulfonated bamboo charcoal-chitosan (sBC-CS) hybrid reinforced natural rubber composites were produced, and sulfur was used as a vulcanizing agent. Their vulcanizing and mechanical properties were characterized. Comparing to the pure chitosan filled natural rubber composites, the sBC-CS reinforced natural rubber composites showed improved mechanical properties, indicating the this material's potential application for rubber reinforcements.
- Kumar MNR, React. Funct. Polym., 46, 1 (2000)
- Rinaudo M, Prog. Polym. Sci, 31, 603 (2006)
- Chen CS, Liau WY, Tsai GJ, J. Food Protect., 61, 1124 (1998)
- Liau CW, Lin JC, J. Biomater. Sci.-Polym. Ed., 12, 543 (2001)
- Singh DK, Ray AR, J. Macromol. Sci. C, 40, 69 (2000)
- Shahidi F, Arachchi JKV, Jeon YJ, Trends Food Sci. Technol., 10, 37 (1999)
- Jayakumar R, Nwe N, Tokura S, Tamura H, Int. J. Biol. Macromol., 40, 175 (2007)
- Crini G, Badot PM, Prog. Polym. Sci, 33, 399 (2008)
- Asada T, Ishihara S, Yamane T, Toba A, Yamada A, Oikawa K, J. Health Sci., 48, 473 (2002)
- Lou CW, Lin CW, Lei CH, Su KH, Hsu CH, Liu ZH, Lin JH, J. Mater. Process. Technol., 192, 428 (2007)
- Arayapranee W, Na-Ranong N, Rempel GL, J. Appl. Polym. Sci., 98(1), 34 (2005)
- Sulekha PB, Joseph R, Prathapan S, J. Appl. Polym. Sci., 81(9), 2183 (2001)
- Ponnamma D, Sadasasivuni KK, Strankowski M, Guo Q, Thomas S, Soft Matter, 9, 10343 (2013)
- Li MC, Ge X, Cho UR, Macromol. Res., 21(5), 519 (2013)
- Deng F, Zhang Y, Ge X, Li M, Li X, Cho UR, J. Appl. Polym. Sci., 9, 133 (2016)
- Zhang J, Zhang P, Guo X, Polym. Mater. Sci. Eng., 18, 32 (2002)
- Lv MZ, Lei F, Yang ZM, Li SD, Li PW, New Chem. Mater., 43, 241 (2015)
- Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S, Colloids Surf. B: Biointerfaces, 80, 86 (2010)
- Rattanasom N, Saowapark T, Deeprasertkul C, Polym. Test, 26, 369 (2007)
- Russo AKBB, Pereira PN, Duarte WR, Drummond JL, Yamauchi M, J. Biomed. Mater. Res. B, 1, 268 (2007)
- Zhang Y, Ge X, Li MC, Deng F, Oh J, Cho UR, Polym. Compos., DOI: 10.1022/pc.24126 (2016).