화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.6, 933-940, November, 2016
술폰화된 뱀부차콜-키토산 혼성체의 제조와 천연고무 강화에의 응용
Preparation of Sulfonated Bamboo Charcoal-Chitosan (sBC-CS) Hybrid and Its Application in the Reinforcement of Natural Rubber
E-mail:
초록
술폰화된 뱀부차콜-키토산(sulfonated bamboo charcol-chitosan, sBC-CS) 혼성체가 천연고무 보강을 위한 바이오고분자를 개발하기 위하여 적용되었다. 공중합은 키토산과 술폰화 반응 방법에 의해 술폰화된 뱀부차콜과 함께 수행되었다. 얻어진 sBC-CS는 FTIR, X-ray 회절, 분산속도 분석, field-emission electron microscopy 및 열무게 분석법에 의하여 분석되었다. 순수한 키토산과 비교하여, sBC-CS의 더 좋은 열안정성이 관찰되었다. 또한 sBC-CS 혼성체로 보강된 천연고무 복합체가 제조되었고, 황이 가교제로 사용되었다. 가황된 복합체의 기계적 물성이 측정되었는데, 순수한 키토산으로 충전된 천연고무 복합체와 비교할 때 sC-CS로 보강된 천연고무 복합체가 개선된 기계적 물성을 보여서, 이 물질이 중요한 고무 보강재임을 나타내었다.
A sulfonated bamboo charcoal-chitosan (sBC-CS) hybrid was applied to develop a biopolymer for natural rubber reinforcements. The copolymerization was conducted with chitosan (CS) and sulfonated bamboo charcoal by a sulfonation reaction method. The obtained sBC-CS was characterized by FTIR, X-ray diffraction, dispersion rate analysis, field-emission electron microscopy, and thermal gravimetric analysis. In comparison to pure chitosan, a greater thermal stability of sBC-CS was observed. In addition, sulfonated bamboo charcoal-chitosan (sBC-CS) hybrid reinforced natural rubber composites were produced, and sulfur was used as a vulcanizing agent. Their vulcanizing and mechanical properties were characterized. Comparing to the pure chitosan filled natural rubber composites, the sBC-CS reinforced natural rubber composites showed improved mechanical properties, indicating the this material's potential application for rubber reinforcements.
  1. Kumar MNR, React. Funct. Polym., 46, 1 (2000)
  2. Rinaudo M, Prog. Polym. Sci, 31, 603 (2006)
  3. Chen CS, Liau WY, Tsai GJ, J. Food Protect., 61, 1124 (1998)
  4. Liau CW, Lin JC, J. Biomater. Sci.-Polym. Ed., 12, 543 (2001)
  5. Singh DK, Ray AR, J. Macromol. Sci. C, 40, 69 (2000)
  6. Shahidi F, Arachchi JKV, Jeon YJ, Trends Food Sci. Technol., 10, 37 (1999)
  7. Jayakumar R, Nwe N, Tokura S, Tamura H, Int. J. Biol. Macromol., 40, 175 (2007)
  8. Crini G, Badot PM, Prog. Polym. Sci, 33, 399 (2008)
  9. Asada T, Ishihara S, Yamane T, Toba A, Yamada A, Oikawa K, J. Health Sci., 48, 473 (2002)
  10. Lou CW, Lin CW, Lei CH, Su KH, Hsu CH, Liu ZH, Lin JH, J. Mater. Process. Technol., 192, 428 (2007)
  11. Arayapranee W, Na-Ranong N, Rempel GL, J. Appl. Polym. Sci., 98(1), 34 (2005)
  12. Sulekha PB, Joseph R, Prathapan S, J. Appl. Polym. Sci., 81(9), 2183 (2001)
  13. Ponnamma D, Sadasasivuni KK, Strankowski M, Guo Q, Thomas S, Soft Matter, 9, 10343 (2013)
  14. Li MC, Ge X, Cho UR, Macromol. Res., 21(5), 519 (2013)
  15. Deng F, Zhang Y, Ge X, Li M, Li X, Cho UR, J. Appl. Polym. Sci., 9, 133 (2016)
  16. Zhang J, Zhang P, Guo X, Polym. Mater. Sci. Eng., 18, 32 (2002)
  17. Lv MZ, Lei F, Yang ZM, Li SD, Li PW, New Chem. Mater., 43, 241 (2015)
  18. Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S, Colloids Surf. B: Biointerfaces, 80, 86 (2010)
  19. Rattanasom N, Saowapark T, Deeprasertkul C, Polym. Test, 26, 369 (2007)
  20. Russo AKBB, Pereira PN, Duarte WR, Drummond JL, Yamauchi M, J. Biomed. Mater. Res. B, 1, 268 (2007)
  21. Zhang Y, Ge X, Li MC, Deng F, Oh J, Cho UR, Polym. Compos., DOI: 10.1022/pc.24126 (2016).