Korean Journal of Chemical Engineering, Vol.34, No.1, 87-99, January, 2017
Enhancement of gasoline selectivity in combined reactor system consisting of steam reforming of methane and Fischer-Tropsch synthesis
E-mail:
A two-stage, one-dimensional configuration model including the steam reforming of methane (SRM) and Fischer-Tropsch (FT) synthesis has been developed for the production of hydrocarbons. This configuration is used to investigate hydrocarbon product distribution, such as gasoline. The first SRM reactor is fed by methane and steam, and the products are converted to hydrocarbons by the second FT reactor. The model was solved numerically by applying the finite difference approximation, and the set of first-order ODEs was solved in the axial direction. The results show that complete conversion of hydrogen in the second reactor can be achieved although a small amount of carbon monoxide remains. Furthermore, at higher H2O/CH4 ratio (and low CO in feed), lower C2-C5 yield and selectivity is obtained.
Keywords:Steam Reforming of Methane;Fischer Tropsch;C5 Yield;Consecutive Reactors;C5 Selectivity;CO2 Yield
- Bartholomew CH, Farrauto RJ, In Fundamentals of industrial catalytic processes, Wiley, Hoboken, New Jersey, USA, Chapter 6 (2006).
- Soliman MA, El-Nashaie SSEH, Al-Ubaid AS, Adris A, Chem. Eng. Sci., 43, 1801 (1988)
- Adris AM, Lim CJ, Grace JR, Chem. Eng. Sci., 52(10), 1609 (1997)
- De Falco M, Di Paola L, Marrelli L, Nardella P, Chem. Eng. J., 128(2-3), 115 (2007)
- Sadooghi P, Rauch R, J. Nat. Gas. Sci. Eng., 11, 46 (2013)
- Wu X, Wu C, Wu SF, Chem. Eng. Res. Des., 96, 150 (2015)
- Deckwer WD, Serpemen Y, Ralek M, Schmidt B, Ind. Eng. Chem. Process Des. Dev., 21, 231 (1982)
- Turner JR, Mills PL, Chem. Eng. Sci., 45, 2317 (1990)
- Song HS, Ramkrishna D, Trinh S, Wright H, Korean J. Chem. Eng., 21(2), 308 (2004)
- Wu JM, Zhang HT, Ying WY, Fang DY, Chem. Eng. Technol., 33(7), 1083 (2010)
- Park N, Kim JR, Yoo Y, Lee J, Park MJ, Fuel, 122, 229 (2014)
- Kim YH, Jun KW, Joo H, Han C, Song IK, Chem. Eng. J., 155(1-2), 427 (2009)
- Avci AK, Trimm DL, Onsan ZI, Chem. Eng. Sci., 56(2), 641 (2001)
- Johns M, Collier P, Spencer MS, Alderson T, Hutchings GJ, Catal. Lett., 90(3-4), 187 (2003)
- Marvast MA, Sohrabi M, Zarrinpashne S, Baghmisheh G, Chem. Eng. Technol., 28(1), 78 (2005)
- Pour AN, Shahri SMK, Zamani Y, Irani M, Tehrani S, J. Nat. Gas. Chem., 17, 242 (2008)
- Xu J, Froment GF, AIChE J., 35, 88 (1989)
- Montazer-Rahmati, Mehdi M, Bargah-Soleimani M, Can. J. Chem. Eng., 79(5), 800 (2001)
- Brauer H, Chem. Ind. Technol., 29, 785 (1957)
- Reichelt W, Blaβ E, Chem. Ind. Technol., 43, 949 (1971)
- Ergun S, Chem. Eng. Prog., 48, 89 (1952)
- De Wasch AP, Froment GF, Chem. Eng. Sci., 27, 567 (1972)
- Froment GF, Bischoff KB, Chemical Reactor Analysis and Design, John Wiley, New York (1979).
- Kunii D, Smith JM, AIChE J., 6, 71 (1960)
- Cussler EL, Diffusion, Mass Transfer in Fluid Systems, Cambridge:Cam. Univ. Press, 525: ll (1984).
- Wilke CR, Chem. Eng. Prog., 45, 218 (1949)
- Panahi M, MSc thesis, Sharif University of Technology, Tehran, Iran (2005).
- Krishnamoorthy S, Li AW, Iglesia E, Catal. Lett., 80(1-2), 77 (2002)
- Rahimpour MR, Elekaei H, Fuel Process. Technol., 90(6), 747 (2009)
- Everson RC, Woodburn ET, Kirk ARM, J. Catal., 53, 186 (1978)