화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.322, 499-507, 2017
Multi-responsive, tough and reversible hydrogels with tunable swelling property
A novel family of multi-responsive, tough, and reversible hydrogels were prepared by the combination of dipole-dipole interaction, hydrogen bonding interaction and slightly chemical cross-linking, using monomers of acrylonitrile, sodium allylsulfonate and itaconic acid. Reversible gel-sol transition was achieved by the flexible conversion of the dipole-dipole interactions between acrylonitrile-acrylonitrile and acrylonitrile-sodium thiocyanate, and the hydrogels could freely form desired shapes. The dipole dipole and hydrogen bonding interactions improved the mechanical strength of the hydrogels with a compressive stress of 2.38 MPa. Meanwhile, the hydrogels sustained cyclic compressive tests with 60% strain, and exhibited excellent elastic property. The hydrogels were sensitive to pH and ionic strength, and could keep their perfect spherical structures without any obvious cracks even after immersing in strong ionic strength (or pH) solution for several reversible cycles. Furthermore, the hydrogels were recycled for environmental pollution remediation, and showed great potential to be applied in water treatments and other related fields. (C) 2016 Elsevier B.V. All rights reserved.