Journal of Industrial and Engineering Chemistry, Vol.48, 173-179, April, 2017
Integrated process for simultaneous production of jet fuel range alkenes and N-methylformanilide using biomass-derived gamma-valerolactone
E-mail:
An integrated process is developed for co-producing jet fuel range alkenes (JFA) and N-methylformanilide (NMF) using biomass-derived gamma-valerolactone (GVL). Based on lab-scale experiments, a commercial-scale process is designed, consisting of catalytic conversion (biomass-to-GVL, GVL-to-JFA, and CO2-to-NMF) and separation subsystems (to capture CO2 from flue gases and recover GVL, JFA, and NMF). Energy efficiency analysis shows that the integrated process has a high energy efficiency (65.6%) after heat integration transferring heat between subsystems. Economic analysis shows that the minimum selling price of NMF ($2,668.3/Mt even if using the worst possible parameters) for the integrated process is cost-competitive with the current market price.
Keywords:Jet-fuel range alkenes;N-methylformanilide;Υ-Valerolactone;Commercial-scale process designs;Economic analysis
- Kim D, Lee K, Park KY, J. Ind. Eng. Chem., 42, 95 (2016)
- Lee HJ, Lim WS, Lee JW, J. Ind. Eng. Chem., 19(6), 2010 (2013)
- He J, Li H, Liu Y, Zhao W, Yang T, Xue W, Yang S, J. Ind. Eng. Chem., 43, 133 (2016)
- Winoto HP, Ahn BS, Jae J, J. Ind. Eng. Chem., 40, 62 (2016)
- Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Bioresour. Technol., 182, 258 (2015)
- Han J, Sen SM, Alonso DM, Dumesic JA, Maravelias CT, Green Chem., 16, 653 (2014)
- Han J, Sen SM, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Comput. Chem. Eng., 81, 57 (2015)
- Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA, Science, 343(6168), 277 (2014)
- Byun J, Han J, Appl. Energy, 171, 483 (2016)
- Byun J, Han J, Bioresour. Technol., 211, 360 (2016)
- Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA, Energy Environ. Sci., 6, 76 (2013)
- Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA, Science, 327(5969), 1110 (2010)
- Song J, Zhou B, Liu H, Xie C, Meng Q, Zhang Z, et al., Green Chem., 18, 3956 (2016)
- Hohn A, Formamide, Van Nostrand's Encyclopedia of Chemistry, (1999).
- Intergovernmental Panel on Climate Change, Climate Change 2014: Mitigation of Climate Change, Cambridge University Press, 2015.
- Kim J, Henao CA, Johnson TA, Dedrick DE, Miller JE, Stechel EB, et al., Energy Environ. Sci., 4, 3122 (2011)
- Kim J, Johnson TA, Miller JE, Stechel EB, Maravelias CT, Energy Environ. Sci., 5, 8417 (2012)
- Kim H, Lee J, Lee S, Lee IB, Park JH, Han J, Energy, 88, 756 (2015)
- Luu MT, Milani D, Bahadori A, Abbas A, J. CO2 Util., 12, 62 (2015)
- Milani D, Khalilpour R, Zahedi G, Abbas A, J. CO2 Util., 10, 12 (2015)
- Meylan FD, Moreau V, Erkman S, J. CO2 Util., 12, 101 (2015)
- Folger P, Carbon capture: a technology assessment. DTIC Document, 2013.
- Seider WD, Seader JD, Lewin DR, Product & Process Design Principles:Synthesis, Analysis And Evaluation, (With CD), John Wiley & Sons, 2009.
- Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al., Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, National Renewable Energy Laboratory (NREL), Golden, CO, 2011.
- Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, et al., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Other Information: PBD: 1 June 2002. p. Medium: ED; Size: 154 pages.
- Linnhoff B, Hindmarsh E, Chem. Eng. Sci., 38, 745 (1983)