화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.48, 173-179, April, 2017
Integrated process for simultaneous production of jet fuel range alkenes and N-methylformanilide using biomass-derived gamma-valerolactone
E-mail:
An integrated process is developed for co-producing jet fuel range alkenes (JFA) and N-methylformanilide (NMF) using biomass-derived gamma-valerolactone (GVL). Based on lab-scale experiments, a commercial-scale process is designed, consisting of catalytic conversion (biomass-to-GVL, GVL-to-JFA, and CO2-to-NMF) and separation subsystems (to capture CO2 from flue gases and recover GVL, JFA, and NMF). Energy efficiency analysis shows that the integrated process has a high energy efficiency (65.6%) after heat integration transferring heat between subsystems. Economic analysis shows that the minimum selling price of NMF ($2,668.3/Mt even if using the worst possible parameters) for the integrated process is cost-competitive with the current market price.
  1. Kim D, Lee K, Park KY, J. Ind. Eng. Chem., 42, 95 (2016)
  2. Lee HJ, Lim WS, Lee JW, J. Ind. Eng. Chem., 19(6), 2010 (2013)
  3. He J, Li H, Liu Y, Zhao W, Yang T, Xue W, Yang S, J. Ind. Eng. Chem., 43, 133 (2016)
  4. Winoto HP, Ahn BS, Jae J, J. Ind. Eng. Chem., 40, 62 (2016)
  5. Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Bioresour. Technol., 182, 258 (2015)
  6. Han J, Sen SM, Alonso DM, Dumesic JA, Maravelias CT, Green Chem., 16, 653 (2014)
  7. Han J, Sen SM, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Comput. Chem. Eng., 81, 57 (2015)
  8. Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA, Science, 343(6168), 277 (2014)
  9. Byun J, Han J, Appl. Energy, 171, 483 (2016)
  10. Byun J, Han J, Bioresour. Technol., 211, 360 (2016)
  11. Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA, Energy Environ. Sci., 6, 76 (2013)
  12. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA, Science, 327(5969), 1110 (2010)
  13. Song J, Zhou B, Liu H, Xie C, Meng Q, Zhang Z, et al., Green Chem., 18, 3956 (2016)
  14. Hohn A, Formamide, Van Nostrand's Encyclopedia of Chemistry, (1999).
  15. Intergovernmental Panel on Climate Change, Climate Change 2014: Mitigation of Climate Change, Cambridge University Press, 2015.
  16. Kim J, Henao CA, Johnson TA, Dedrick DE, Miller JE, Stechel EB, et al., Energy Environ. Sci., 4, 3122 (2011)
  17. Kim J, Johnson TA, Miller JE, Stechel EB, Maravelias CT, Energy Environ. Sci., 5, 8417 (2012)
  18. Kim H, Lee J, Lee S, Lee IB, Park JH, Han J, Energy, 88, 756 (2015)
  19. Luu MT, Milani D, Bahadori A, Abbas A, J. CO2 Util., 12, 62 (2015)
  20. Milani D, Khalilpour R, Zahedi G, Abbas A, J. CO2 Util., 10, 12 (2015)
  21. Meylan FD, Moreau V, Erkman S, J. CO2 Util., 12, 101 (2015)
  22. Folger P, Carbon capture: a technology assessment. DTIC Document, 2013.
  23. Seider WD, Seader JD, Lewin DR, Product & Process Design Principles:Synthesis, Analysis And Evaluation, (With CD), John Wiley & Sons, 2009.
  24. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al., Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, National Renewable Energy Laboratory (NREL), Golden, CO, 2011.
  25. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, et al., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Other Information: PBD: 1 June 2002. p. Medium: ED; Size: 154 pages.
  26. Linnhoff B, Hindmarsh E, Chem. Eng. Sci., 38, 745 (1983)