화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.2, 171-176, April, 2017
질소 플라즈마 공정을 이용한 염화이불화메탄(CHClF2) 열분해
Chlorodifluoromethane (CHClF2) Thermal Decomposition by DC Nitrogen Plasma
E-mail:,
초록
염화이불화메탄(CHClF2) 냉매를 완전하게 분해하여 회수하기 위한 질소 플라즈마 열분해 공정이 연구되었다. 과열증기를 공급하여 분해가 보다 원활히 이루어질 수 있도록 스팀 발생기가 부착되었다. 60 A, 9.0 kW 이상의 운전 조건에서 94% 이상의 높은 분해율을 보이지만 탄소 성분의 완전 연소를 위해서는 같은 전류 대비 더 높은 power와 specific energy density를 갖춰야 함이 확인되었다. 60 A, 12.6 kW급 이상의 운전 조건에서는 O2/R-22 ratio가 specific energy density에 비례하여 증가하였을 때 더 높은 분해율을 획득할 수 있었다. 반응물인 산소를 주입하는데 있어서 air를 단독으로 과량 주입하는 것보다는 산소를 air와 혼합하여 주입하는 것이 더 유용함이 밝혀졌다.
The nitrogen plasma thermal decomposition and recovery processes for CHClF2 (Chlorodifluoromethane) refringent were investigated. The steam generator was employed to provide superheated steam reactor, supporting the decomposition reaction of refringent. Even though over 94% of R-22 was decomposed on the condition of 60 A and 9.0 kW, a higher power and specific energy density were required to achieve the complete combustion of carbon materials. In the operating condition of 60 A and 12.6 kW, O2/R-22 ratio in reactants gases are a key factor to obtain much higher decomposition ratio during process. It should be noticed that injecting the mixture of O2 and air was much more effective than injecting the air consisting equivalent O2 amount.
  1. Steiner A, Ravishankara AR, Molina M, HFCs: A Critical Link in Protecting Climate and the Ozone Layer, pp. 13-26, United Nations Environment Programme (UNEP) Synthesis Report (2011).
  2. Walrevens F, Newman J, Risk Assessment of Illegal Trade in HCFCs, pp. 3-13, United Nations Environment Programme (UNEP) (2011).
  3. Angelinoa G, Invernizzib C, Int. J. Refrig. -Rev. Int. Froid, 26, 51 (2003)
  4. Yu H, Kennedy EM, Adesina AA, Dlugogorski BZ, Catal. Surv. Asia, 10, 40 (2006)
  5. Kim SD, Kim EK, Kim HR, Lee YP, Park JH, Byun SH, Seo HJ, Lee SH, J. Korean Soc. Waste Manag., 29, 650 (2012)
  6. Kwon HJ, Korean Int. J. Air-Cond. Refrig. Eng., 43, 18 (2014)
  7. Thompson CD, Robertson EG, McNaughton D, Chem. Phys., 279, 239 (2002)
  8. Kim TH, Choi S, Park DW, Curr. Appl. Phys., 12(2), 509 (2012)
  9. Lee JH, Hwang SM, Lee DW, Heo GS, Bull. Korean Chem. Soc., 23, 488 (2002)
  10. Miller BR, Weiss RF, Salameh PK, Tanhua T, Greally BR, Muhle J, Simmonds PG, Anal. Chem., 80, 1536 (2008)
  11. Ravishankara AR, Solomon S, Turnipseed AA, Warren RF, Science, 259, 194 (1993)
  12. McCullocha A, Lindley AA, Atmos. Environ., 41, 1560 (2007)
  13. Velders GJM, Andersen SO, Daniel JS, Fahey DW, McFarland M, Proc. Natl. Acad. Sci. U.S.A., 104, 4814 (2007)
  14. Halonen I, Tarhanen J, Kopsa T, Palonen J, Vilokki H, Ruuskanen J, Chemosphere, 26, 1869 (1993)
  15. Huang H, Buekensl A, Chemosphere, 32, 4099 (1995)
  16. Kim YH, Jun SH, Shin CG, Study on optimal treatment of waste gas, National Institute of Environmental Research, South Korea, 9-120 (2013).
  17. Deam RT, Dayal AR, McAllister T, Mundy AE, Western RJ, Besley LM, Farmer AJD, Horrigan EC, Murphy AB, J. Chem. Soc.-Chem. Commun., 3, 347 (1995)
  18. Yanagisawa K, Kozawa T, Onda A, Kanazawa M, Shinohara J, Takanami T, Shiraishi M, J. Hazard. Mater., 163(2-3), 593 (2009)
  19. Jasinski M, Szczucki P, Dors M, Mizeraczyk J, Lubanski M, Zakrzewski Z, J. Phys., 50, 285 (2000)
  20. Park HW, Control of Air Pollutants in a Wet Chemical Reactor Combined with Corona Discharge, PhD Dissertation, Inha University, Incheon, Korea (2015).