Clean Technology, Vol.23, No.4, 429-434, December, 2017
Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구
Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction
E-mail:
초록
저온 수성가스전이반응에서 Cu/ZnO/MgO/Al2O3 (CZMA) 촉매의 마그네슘의 영향을 조사하기 위하여 Cu/Zn/Mg/Al의 비율을 45/45/5/5 mol%로 공침법을 사용하여 제조하였다. 제조된 촉매들은 BET, N2O 화학흡착, XRD, H2-TPR and NH3-TPD를 사용하여 분석되었다. 촉매 활성 테스트는 GHSV 28,000 h-1와 온도 범위 200 ~ 320 ℃에서 수행되었다. 동일한 조건에서 마그네슘이 첨가된 촉매(CZMA 400)는 가장 낮은 환원 온도를 나타내며 활성종인 Cu+가 안정적으로 존재하고 또한 많은 약산점을 보유하였다. 또한 마그네슘이 첨가된 촉매(CZMA)는 마그네슘이 첨가되지 않은 촉매(CZA)와 비교하였을 때 240 이상의 높은 온도에서 촉매 활성이 증가하였다. CZMA 400 촉매는 최적의 촉매로서 240 ℃, GHSV 28,000 h-1에서 75 h 동안 활성의 저하없이 평균 CO 전환율 77.59%를 나타내었다.
To investigate the effect of magnesium oxide addition, Cu/ZnO/MgO/Al2O3 (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, N2O chemisorption, XRD, H2-TPR and NH3-TPD analysis. The catalytic activity tests were carried out at a GHSV of 28,000 h-1 and a temperature range of 200 ~ 320 ℃. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of Cu+, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above 240 ℃ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at 240 ℃, GHSV 28,000 h-1.
- Mikkelsen M, Jørgensen M, Krebs FC, Energy Environ. Sci., 3(1), 43 (2010)
- Im HB, et al., Trans Korean Hydrog. New Energy Soc., 25(6), 577 (2014)
- Rhodes C, Hutchings GJ, Ward AM, Catal. Today, 23(1), 43 (1995)
- Byun CK, Im HB, Park J, Baek J, Jeong J, Yoon WR, Yi KB, Clean Technol., 21(3), 200 (2015)
- Smith R, Loganathan M, Shantha MS, Int. J. Chem. Eng. Appl., 8(1) (2010)
- Baek JH, et al., Trans Korean Hydrog. New Energy Soc., 26(5), 423 (2015)
- Stone FS, Waller D, Top. Catal., 22(3-4), 305 (2003)
- Saito M, Murata K, Catal. Surv. Asia, 8(4), 285 (2004)
- Gokhale AA, Dumesic JA, Mavrikakis M, J. Am. Chem. Soc., 130(4), 1402 (2008)
- Li K, Fu Q, Flytzani-Slephanopoulos M, Appl. Catal. B: Environ., 27(3), 179 (2000)
- Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62 (2006)
- Wang X, Gorte RJ, Wagner JP, J. Catal., 212(2), 225 (2002)
- Twigg MV, Spencer MS, Appl. Catal. A: Gen., 12(1), 161 (2001)
- Kumar P, Idem R, Energy Fuels, 21(2), 522 (2007)
- Nishida K, et al., Appl. Clay Sci., 44(3), 211 (2009)
- Baek JI, Yang SR, Eom TH, Lee JB, Ryu CK, Fuel, 144, 317 (2015)
- Shishido T, Yamamoto M, Atake I, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, J. Mol. Catal. A-Chem., 253(1-2), 270 (2006)
- Lindstrom B, Pettersson LJ, Menon PG, Appl. Catal. A: Gen., 234(1-2), 111 (2002)
- Lima AAG, Nele M, Moreno EL, Andrade HMC, Appl. Catal. A: Gen., 171(1), 31 (1998)
- Figueiredo RT, Andrade HMC, Fierro JLG, J. Mol. Catal. A-Chem., 318(1-2), 15 (2010)
- Petallidou KC, et al., J. Phys. Chem., 117(48), 25467 (2013)
- Kumar P, Srivastava VC, Mishra IM, Energy Fuels, 29(4), 2664 (2015)
- Jeong JW, Ahn CI, Lee DH, Um SH, Bae JW, Catal. Lett., 143(7), 666 (2013)