화학공학소재연구정보센터
Clean Technology, Vol.23, No.4, 429-434, December, 2017
Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구
Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction
E-mail:
초록
저온 수성가스전이반응에서 Cu/ZnO/MgO/Al2O3 (CZMA) 촉매의 마그네슘의 영향을 조사하기 위하여 Cu/Zn/Mg/Al의 비율을 45/45/5/5 mol%로 공침법을 사용하여 제조하였다. 제조된 촉매들은 BET, N2O 화학흡착, XRD, H2-TPR and NH3-TPD를 사용하여 분석되었다. 촉매 활성 테스트는 GHSV 28,000 h-1와 온도 범위 200 ~ 320 ℃에서 수행되었다. 동일한 조건에서 마그네슘이 첨가된 촉매(CZMA 400)는 가장 낮은 환원 온도를 나타내며 활성종인 Cu+가 안정적으로 존재하고 또한 많은 약산점을 보유하였다. 또한 마그네슘이 첨가된 촉매(CZMA)는 마그네슘이 첨가되지 않은 촉매(CZA)와 비교하였을 때 240 이상의 높은 온도에서 촉매 활성이 증가하였다. CZMA 400 촉매는 최적의 촉매로서 240 ℃, GHSV 28,000 h-1에서 75 h 동안 활성의 저하없이 평균 CO 전환율 77.59%를 나타내었다.
To investigate the effect of magnesium oxide addition, Cu/ZnO/MgO/Al2O3 (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, N2O chemisorption, XRD, H2-TPR and NH3-TPD analysis. The catalytic activity tests were carried out at a GHSV of 28,000 h-1 and a temperature range of 200 ~ 320 ℃. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of Cu+, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above 240 ℃ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at 240 ℃, GHSV 28,000 h-1.
  1. Mikkelsen M, Jørgensen M, Krebs FC, Energy Environ. Sci., 3(1), 43 (2010)
  2. Im HB, et al., Trans Korean Hydrog. New Energy Soc., 25(6), 577 (2014)
  3. Rhodes C, Hutchings GJ, Ward AM, Catal. Today, 23(1), 43 (1995)
  4. Byun CK, Im HB, Park J, Baek J, Jeong J, Yoon WR, Yi KB, Clean Technol., 21(3), 200 (2015)
  5. Smith R, Loganathan M, Shantha MS, Int. J. Chem. Eng. Appl., 8(1) (2010)
  6. Baek JH, et al., Trans Korean Hydrog. New Energy Soc., 26(5), 423 (2015)
  7. Stone FS, Waller D, Top. Catal., 22(3-4), 305 (2003)
  8. Saito M, Murata K, Catal. Surv. Asia, 8(4), 285 (2004)
  9. Gokhale AA, Dumesic JA, Mavrikakis M, J. Am. Chem. Soc., 130(4), 1402 (2008)
  10. Li K, Fu Q, Flytzani-Slephanopoulos M, Appl. Catal. B: Environ., 27(3), 179 (2000)
  11. Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62 (2006)
  12. Wang X, Gorte RJ, Wagner JP, J. Catal., 212(2), 225 (2002)
  13. Twigg MV, Spencer MS, Appl. Catal. A: Gen., 12(1), 161 (2001)
  14. Kumar P, Idem R, Energy Fuels, 21(2), 522 (2007)
  15. Nishida K, et al., Appl. Clay Sci., 44(3), 211 (2009)
  16. Baek JI, Yang SR, Eom TH, Lee JB, Ryu CK, Fuel, 144, 317 (2015)
  17. Shishido T, Yamamoto M, Atake I, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, J. Mol. Catal. A-Chem., 253(1-2), 270 (2006)
  18. Lindstrom B, Pettersson LJ, Menon PG, Appl. Catal. A: Gen., 234(1-2), 111 (2002)
  19. Lima AAG, Nele M, Moreno EL, Andrade HMC, Appl. Catal. A: Gen., 171(1), 31 (1998)
  20. Figueiredo RT, Andrade HMC, Fierro JLG, J. Mol. Catal. A-Chem., 318(1-2), 15 (2010)
  21. Petallidou KC, et al., J. Phys. Chem., 117(48), 25467 (2013)
  22. Kumar P, Srivastava VC, Mishra IM, Energy Fuels, 29(4), 2664 (2015)
  23. Jeong JW, Ahn CI, Lee DH, Um SH, Bae JW, Catal. Lett., 143(7), 666 (2013)